Hexaphenylbenzene and Hexabenzocoronene-Based Porous Polymers for the Adsorption of Volatile Organic Compounds

Arosha A. K. Karunathilake^a, James Chang^b, Christina M. Thompson^a, Cathy U. Nguyen^a, Dorothy Q. Nguyen^a, Aditya Rajan^a, Anjali Sridharan^a, Megha Vyakaranam^a Nathaniel Adegboyega^b, Sung Joon Kim^b* and Ronald A. Smaldone^a*

* Correspondence Address

Professor Ronald A. Smaldone Department of Chemistry and Biochemistry University of Texas, Dallas 800 W. Campbell Road Richardson, Texas 75080 Tel: (+1)-972-883-6342 *E-Mail: ronald.smaldone@utdallas.edu*

Supplementary Information

Table of Contents

1.	Synthesis Procedures	S 3
2.	FT-IR Characterization	S 4
3.	EDX Data	S 4
4.	Thermogravimetric Analysis	S 5
5.	PXRD Characterization	S 5
6.	Sorption Isotherms for CO ₂	S 6
7.	Sorption Isotherms for Vapours	S 7
8.	Vapour Adsorption Comparison Chart	S 9
	References	S10

1. Monomer Synthesis

Fig S1: Synthesis of hexa(4-iodophenyl)benzene (**HPB-6I**) nd hexakis(4-iodo)-perihexabenzocoronene (**HBC-6I**)¹⁻⁴

2. FT-IR Characterization

Fig S2: IR spectra of starting material: TPM and two POPs: HEX-POP-93 and HBC-POP-98

3. EDX Data

C map I map Fig S3: Carbon and iodine EDX maps of (a) HEX-POP-93 and (b) HBC-POP-98

Sample	Weight %					
	C%	I%	Pd%			
HEX-POP-93	89.90	9.50	0.60			
HBC-POP-98	90.34	9.00	0.65			

Table S1: Elemental ratios in HEX-POP-93 and HBC-POP-98for carbon, iodine, and palladium based on EDX analysis

4. Thermogravimetric Analysis

FIG S4: TGA curves of HEX-POP-93 and HBC-POP-98

5. Powder X-Ray Diffraction Characterization

Fig S5: PXRD patterns of HEX-POP-93 and HBC-POP-98

6. Sorption Isotherms for CO₂

Fig S6: Adsorption (close circles) and desorption (open circles) isotherms of CO₂ for HEX-POP-93 (red) and HBC-POP-98 (blue) at (a) 273 K and (b) 298 K

7. Sorption Isotherms for Vapours

Fig S7: Adsorption and desorption isotherms of benzene vapour for HEX-POP-93 and HBC-POP-98 at 298 K

Fig S8: Adsorption and desorption isotherms of toluene vapour for HEX-POP-93 and HBC-POP-98 at 298 K

Fig S9: Adsorption and desorption isotherms of cyclohexane vapour for HEX-POP-93 and HBC-POP-98 at 298 K

Fig S10: Adsorption and desorption isotherms of methanol vapour for HEX-POP-93 and HBC-POP-98 at 298 K

8. Vapour Adsorption Comparison Chart

Material	Material BET Adsorption wt%						Reference
	surface	Benzene	Toluene	Cyclohexane	Methanol	Water	
	area			-			
HEX-POP-93	687	99.9	47.1	25.4	36.2	1.0	а
HBC-POP-98	548	53.0	54.6	51.7	34.0	0.5	а
MIL-101	3900	130.4 ^b	-	-	-	-	5
MIL-101	3980	129.1°	109.6°	-	-	-	6
PAF-1	5600	130.6 ^c	135.7°	-	-	-	7
PAF-2	891	13.8 ^c	-	0.7°	-	-	8
PAF-5	1503	128.6 ^c	111.4 ^c	-	94.9°	-	9
PAF-11	704	87.4 ^c	78.0 ^c	-	65.4 ^c	3.5°	10
SMPI-0	574.4	134.7	-	42.5	60	14.9	11
SMPI-10	112.0	104.7	-	42.8	83.4	30.4	11
CE-1	960	58.5	-	-	-	22.0	12
CE-2	588	35.1	-	-	-	6.9	12
PBI-1	62	54.4	-	-	-	32.9	13
MPI-1	1454	119.8	-	50.1	-	16.7	14
MPI-2	814	76.6	-	44.8	-	9.9	14
NPI-1	721	90.5	-	58.1	-	14.1	15
PI-ADPM	868	99.2	-	59.7	-	28.45	16
PSN-3	865	80.5	-	63.7	-	6.4	17
PSN-DA	1045	86.1	-	77.9	-		18
PCN-AD	843	98.0	-	57.4	-		19
PAN-1	925	72.6	-	52.7	-	8.4	20
PAN-2	1245	69.2	-	38.3	-	10.4	20
PBI-Ad-1	1023	98.0	-	53.6	-	-	21
PBI-Ad-2	926	76.5	-	46.3	-	-	21

Table S2: Adsorption capacities for POPs in this work and other materials.

^a in this work, ^b calculate from given mmol g⁻¹ values, ^c calculated from given mg g⁻¹ values

References

- 1. J. R. Johnson and O. Grummitt, Org. Synth., 1943, 23, 92.
- 2. L. F. Fieser, Org. Synth., 1966, 46, 44.
- 3. T. Hirose, Y. Miyazaki, M. Watabe, S. Akimoto, T. Tachikawa, K. Kodama and M. Yasutake, *Tetrahedron*, 2015, **71**, 4714-4721.
- 4. J. Wu, M. Baumgarten, M. G. Debije, J. M. Warman and K. Müllen, *Angew. Chem.*, 2004, **116**, 5445-5449.
- 5. S. Jhung, J. -H. Lee, J. Yoon, C. Serre, G. Férey and J. -S. Chang, *Adv. Mater.*, 2007, **19**, 121-124.
- 6. K. Yang, Q. Sun, F. Xue and D. Lin, J. Hazard. Mater., 2011, 195, 124-131.
- T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. Simmons, S. Qiu and G. Zhu, *Angew. Chem. Int. Ed.*, 2009, **48**, 9457-9460.
- 8. H. Ren, T. Ben, E. Wang, X. Jing, M. Xue, B. Liu, Y. Cui, S. Qiu and G. Zhu, *Chem. Commun.*, 2010, **46**, 291-293.
- 9. H. Ren, T. Ben, F. Sun, M. Guo, X. Jing, H. Ma, K. Cai, S. Qiu and G. Zhu, *J. Mater. Chem.*, 2011, **21**, 10348-10353.
- 10. Y. Yuan, F. Sun, H. Ren, X. Jing, W. Wang, H. Ma, H. Zhao and G. Zhu, *J. Mater. Chem.*, 2011, **21**, 13498-13502.
- 11. Y. Yang, Q. Zhang, Z. Zhang and S. Zhang, J. Mater. Chem. A, 2013, 1, 10368-10374.
- 12. H. Yu, C. Shen, M. Tian, J. Qu and Z. Wang, *Macromolecules*, 2012, 45, 5140-5150.
- 13. H. Yu, M. Tian, C. Shen and Z. Wang, Polym. Chem., 2013, 4, 961-968.
- 14. G. Li and Z. Wang, Macromolecules, 2013, 46, 3058-3066.
- 15. G. Li and Z. Wang, J. Phys. Chem. C, 2013, 117, 24428-24437.
- 16. C. Shen, Y. Bao and Z. Wang, Chem. Commun., 2013, 49, 3321-3323.
- 17. G. Li, B. Zhang and Z. Wang, *Macromol. Rapid Commun.*, 2014, 35, 971-975.
- 18. G. Li, B. Zhang, J. Yan and Z. Wang, J. Mater. Chem. A, 2014, 2, 18881-18888.
- 19. C. Shen, H. Yu and Z. Wang, Chem. Commun., 2014, 50, 11238-11241.
- 20. G. Li, B. Zhang, J. Yan and Z. Wang, Macromolecules, 2014, 47, 6664-6670.
- 21. B. Zhang, G. Li, J. Yan and Z. Wang, J. Phys. Chem. C, 2015, 119, 13080-13087.