Electronic Supporting Information:

Direct growth of highly dispersed CoO nanoparticles on mesoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction

Pengxi Li,^{a,b} Ruguang Ma,^a Yao Zhou,^a Yongfang Chen,^a Qian Liu,^{*a} Guihua Peng,^b and

Jiacheng Wang*a

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China. jiacheng.wang@mail.sic.ac.cn; qianliu@sunm.shcnc.ac.cn

^bState Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical of Guangxi Normal University, Guilin 541004, Guangxi, P. R. China.

Fig. S1 N₂ adsorption-desorption isotherm loop (a) and pore size distribution (b) for MC.

Fig. S2 Tafel plot of CoO/MC nanohybrids and commercial Pt/C corresponding LSV curves measured in O₂-saturated 0.1M KOH at a rotating speed of 1600 rpm.