Electronic Supporting Information

Rhodamine-based "off-on" fluorescent chemosensor for selective

detection of Fe³⁺ in aqueous media and its application in bioimaging

Singming Chan,^a Qinghua Li,^a Hoyin Tse,^a Albert W. M. Lee,^a N. K. Mak,^b H. L. Lung^b and Wing-Hong Chan^{a,c*}

Experimental

¹H and ¹³C NMR spectra were recorded on a Bruka Advance-III spectrometer (at 400 and 100 MHz, respectively) in CDCl₃. High-resolution mass spectra were recorded on a Bruka Autoflex mass spectrometer (MALDI-TOF). Fluorescent emission spectra and UV-vis spectra were collected on a PE LS50B and a Cary UV-100 spectrometer, respectively. All fine chemicals were used as received. **CaSHII** was synthesized using our published method [1].

Reference:

[1] Q. Li, W-. Y. Wong,; W-. H. Chan, A. W. M. Lee, *Adv. Synth. Catal.* 2010, 352, 2142-2146 and references therein.

Synthesis of **FIS1**:

A solution of Rhodamine B (0.30 g, 0.62 mmol) in POCl₃ (5 mL) was refluxed for 5 h. The reaction mixture was then cooled and concentrated by evaporation. The obtained acid chloride which was dissolved in ClCH₂CH₂Cl (20 mL) together with **CaSHII** (0.14 g, 0.58 mmol) and triethylamine (0.7 mL). The mixture was stirred at room temperature for 12 h and was then concentrated by evaporation. The crude product was purified by silica gel column chromatography with EtOAc/*n*-hexane (1/3, v/v) to afford **FIS1** as a pink solid (m.p. 225-227^oC, 0.12 g, yield 33%). ¹H NMR (400 MHz, CDCl₃) δ 7.91(1H, d, *J* = 7.6 Hz), 7.57-7.49 (2H, m), 7.20 (1H, d, *J* = 7.6 Hz), 6.57 (1H, d, *J* = 8.8 Hz),

6.42-6.25 (5H, m), 4.54-4.51 (1H, m), 3.40-3.24 (9 H, m), 3.15 (1H, d, *J* = 13.6 Hz), 1.79-1.75 (1H, m), 1.66-1.63 (2H, m), 1.46-1.44 (1H, m), 1.41-1.35 (1H, m), 1.15-1.11 (12H, m), 1.04-0.94 (5H, m), 0.82 (1H, s), 0.66-0.61(1H, m). ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 154.6, 150.3, 149.2, 148.9, 133.2, 130.9, 129.9, 129.1, 128.3, 124.5, 123.0, 108.3, 108.1, 107.0, 98.6, 98.0, 66.8, 66.4, 50.0, 48.0, 46.2, 44.6, 44.4, 36.0, 34.2, 26.2, 21.6, 19.7, 12.6, 12.4, 12.2 ppm.

HRMS (ESI): m/z calcd for C₄₈H₄₇N₄O₄S [M+H]⁺: 655.3313; found, 655.3295.

 $[\alpha]_{D}^{20}$ = -26.88 (c=0.42, CHCl₃)

Fig. S1 ¹H NMR spectrum of FIS1

Fig. S3 ¹³C NMR spectrum of FIS1

Fig. S4 HRMS (ESI mode) of FIS1

Fig. S5 Fluorescent spectra of FIS1 (10 μ M) upon addition of 3.5 equivalent of Fe³⁺ in aqueous solution of acetonitrile of different composition (H₂O: ACN, v/v = 99:1; 90:10; 80:20; 70:30; 60:40; 50:50).

Fig. S6 The pH effect of the probe $(1 \ \mu M)$ in aqueous ACN solution (1:1, v/v) at different pH in response to 10 equivalent of Fe³⁺.

1 μ M FIS1 vs 2 μ M Fe ³⁺ (2.0 equivalents)	Fluorescent Ratio Value
1 st trial	9.4871
2 nd trial	10.2155
3 rd trial	9.1269

Estimation of the LOD of the probe:

 $3 \times$ standard deviation of the Fluorescent Ratio Value ÷ Slope of the Calibration

Curve

 $= 3 \times 0.5546 \div 6.5153$

= 0.2554 µM

Fig. S7 The estimation of the LOD of FIS1 by fluorescent titration with Fe^{3+} by the probe.

Fig. S8 Change of fluorescence spectra of the probe **FIS1** (2 μ M) in response to 10 equiv. of Fe³⁺ over a period of 10 min (1:1 = H₂O:ACN, v/v).