1	Supporting Information
2	
3	An all-solid-state imprinted polymer-based potentiometric
4	sensor for determination of bisphenol S
5	Tiantian Wang <i>a,b</i> , Rongning Liang *, <i>b</i> , Tanji Yin <i>b</i> , Ruiqing Yao*, <i>a</i> and Wei Qin <i>b</i>
6	
7	^a School of Chemical engineering, Northwest University, Xi an 710069, P. R. China.
8	^b Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of
9	Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS); Shandong Provincial Key
10	Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China.
11	
12	
13	*Corresponding author. Tel.: +86-535-2109234, Fax: +86-535-2109000.
14	E-mail address: mliang@yic.ac.cn (R. N. Liang); yaoruiqing@nwu.edu.cn (R. Q. Yao)
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	

1 Reagents and materials

2 Bisphenol S (BPS), 4,4'-sulfonyldiphenol, acetonitrile (ACN), sodium hydroxide, methanol, benzyl alcohol, zinc chloride and tetrahydrofuran (THF) were obtained from Guoyao Chemical Reagent Co., 3 Ltd (Shanghai, China). Methacrylic acid (MAA), ethylene glycoldimethacrylate (EGDMA), 4-4 vinylpyridine (4-VP) and 2,2'-azobisisobutyronitrile (AIBN) were purchased from Aladdin Shanghai 5 Reagent Company. High molecular weight poly(vinyl chloride) (PVC), dioctylphthalate (DOP), 6 7 tridodecylmethylammoniumchloride (TDMAC) and tetradodecylammonium tetrakis(4chlorophenyl)borate (ETH 500) were purchased from Sigma-Aldrich. MAA and THF were distilled 8 prior to use. All other reagents were analytical grade and used as received. Aqueous solutions were 9 prepared by dissolving the appropriate salts in the freshly de-ionized water (18.2M Ω cm specific 10 resistance) obtained with a Pall Cascada laboratory water system. 11

12 Synthesis of the molecularly imprinted polymer (MIP)

13 The BPS MIP beads were synthesized by the precipitation polymerization method as described 14 elsewhere.^{1,2} The template BPS (1 mmol), MAA (2mmol), 4-VP (2 mmol), EGDMA (10 mmol) and 15 AIBN (50 mg) were dissolved in ACN (25 mL) in a 50 mL flask. The solution was degassed with N₂ 16 for 10 min and then sealed under N₂ atmosphere. The polymerization was performed by placing the 17 flask in an oil bath at 60 °C for 18 h. After polymerization, the polymer particles were added to a mixture of methanol/1 M NaOH (75:25, v/v), and heated in reflux with stirring for 20 h to remove the 18 template. The non-imprinted polymer (NIP) was synthesized by the similar procedures except for 19 20 omission of the template. The obtained MIP and NIP beads were characterized by scanning electron microscopy (SEM; Hitachi, S-4800). 21

22 Fabrication of the nanoporous gold (NPG) film

The NPG film was fabricated by the multicyclic electrochemical alloying/dealloying method as described before.^{3,4} Briefly, the alloying/dealloying process was carried out in a benzyl alcohol solution containing ZnCl₂ with a three-electrode system controlled by CHI 660C Electrochemical Workstation (CH Instruments Inc.). A freshly polished gold electrode was used as the working electrode. A Zn wire was utilized as the reference electrode, and a Zn plate served as the auxiliary electrode. The electrochemical cycles were first recorded at 120 °C from the open circuit potential to -0.72 V and then repeatedly scanned in the potential range from -0.72 to 1.88 V (*vs* Zn). The obtained NPG film-based
 electrodes were finally washed with benzyl alcohol, ethanol, and de-ionized water in sequence.

3 Cyclic voltammetry (CV) was conducted in $0.5 \text{ M H}_2\text{SO}_4$ to characterize the real surface areas of the 4 Au/NPG electrodes using a conventional three-electrode cell comprising the NPG film-based gold 5 electrode as the working electrode, a Ag/AgCl/3 M KCl electrode as the reference electrode and a 6 platinum wire as the auxiliary electrode.

7 Preparation of the solid-contact electrodes

8 The membrane cocktail was prepared by dissolving 360 mg of components in 4.5 mL THF: MIP or NIP (6.0 wt%), TDMAC (1.5 wt%), ETH 500 (2.0 wt%), PVC (35.9 wt%), and DOP (54.6 wt%), and 9 10 then degassed by sonication for 10 min. 100 µL membrane cocktail was drop-cast onto the NPG film-11 based electrode and allowed to dry for 2 h. For comparison, the coated-wire electrode (CWE) was fabricated with the membrane cocktail directly casted on the polished gold electrode. For 12 potentiometric detection of deprotonated BPS, the electrodes were conditioned in 10⁻⁴ M BPS in 30 13 mM NaHCO₃/Na₂CO₃ buffer of pH 10.2 for one day, while for neutral BPS, the electrodes were 14 conditioned in 30 mM phosphate buffer solution (PBS) buffer with a pH of 5.0 for one day. 15

16 Electromotive force (EMF) measurements

17 All measurements of EMF were performed at $20 \pm 1^{\circ}$ C using a PXSJ-216L pH meter (Leici, 18 Shanghai) with a saturated calomel electrode (SCE) as reference electrode in the galvanic cell: 19 SCE//sample solution/ISE membrane/NPG film/bare gold electrode. For determination of deprotonated 20 BPS, the EMF values were corrected for the liquid-junction potential according to the Henderson 21 equation. The ion activity coefficient was calculated from the modified Debye-Hükel equation.⁵

22 References for the Supporting Information:

23 1. K. Yoshimatsu, K. Reimhult, A. Krozer, K. Mosbach, K. Sode and L. Ye, *Anal. Chim. Acta*, 2007,
24 584, 112-121.

25 2. L. J. Kou, R. N. Liang, X. W. Wang, Y. Chen and W. Qin, *Anal. Bioanal. Chem.*, 2013, 405, 493126 4936.

- 27 3. F. L. Jia, C. F. Yu, Z. H. Ai and L. Z. Zhang, Chem. Mater., 2007, 19, 3648-3653.
- 28 4. T. J. Yin, D. W. Pan and W. Qin, Anal. Chem., 2014, 86, 11038-11044.
- 29 5. S. Kamaata, A. Bhale, Y. Fukunaga and H. Murata, Anal. Chem., 1988, 60, 2464-2467.

3 Fig. S1 CVs for the bare Au electrode (a) and the Au/NPG electrode (b) recorded in 0.5 M H_2SO_4at a 4 scan rate of 10 mV/s.

Fig. S2 Effect of the amount of MIP on the potential response to deprotonated BPS. Experimental
conditions: detection background, 30 mM NaHCO₃/Na₂CO₃ buffer of pH 10.2; conditioning solution,
10⁻⁴ M BPS in 30 mM NaHCO₃/Na₂CO₃ buffer of pH 10.2. Error bars represent one standard deviation
for three measurements.

3 Fig. S3 Recycle potential response profiles for 10 μM neutral BPS. Experimental conditions: detection
4 background, 30 mM PBS with a pH of 5.0; conditioning solution, the same as the detection background.
5

- _

Fig. S4 Dynamic potential responses to neutral BPS of 10 μM using the blank (a), NIP (b) and MIP (c)
membrane-based electrodes. Membrane ingredients (in wt%): (1) blank membrane, 1.5 % TDMAC, 2.0
% ETH 500, 38.3 % PVC and 58.2 % DOP; (2) NIP membrane, 1.5 % TDMAC, 2.0 % ETH 500,
35.9% PVC, 54.6 % DOP and 6.0 % NIP; (3) MIP membrane, 1.5 % TDMAC, 2.0 % ETH 500, 35.9%
PVC, 54.6 % DOP and 6.0 % MIP. Other conditions are as given in Fig. S3.

	Proposed sensor (µM)ª	HPLC (µM) ^a	Recovery results		
Sample			Added (µM)	Found (µM)ª	Recovery (%)
Sample 1	0.18 ± 0.04	0.22 ± 0.05	0.40	0.59 ± 0.04	95
-			0.60	0.80 ± 0.03	98
			0.80	1.03 ± 0.01	101
Sample 2	0.26 ± 0.01	0.24 ± 0.03	0.40	0.60 ± 0.05	94
			0.60	0.83 ± 0.01	99
			0.80	1.05 ± 0.02	101

2 Table S1 Application of the proposed sensor to determination of neutral BSA in BPA-free baby bottles

4 ^a Average of three measurements \pm standard deviation.