Supporting information:

Fig.1. The minimum energy profiles and the configurations of different states for CO oxidation reaction on Fe/DG sheet, including (a) $CO + O_2$ reaction by the LH mechanism, (b) $CO + O_2 = CO_2 + O_{ads}$ and (c) $CO + O_{ads}$ reaction by the ER mechanism. Red, Green, and black balls represent O, Fe and C atoms, respectively.

Fig.2. The minimum energy profiles and the configurations of different states for CO oxidation reaction on Fe/DG sheet, including (a) $CO + O_2$ and (b) $CO_3 + CO$ reactions by the ER mechanism. Red, green, and black balls represent O, Fe and C atoms, respectively. **Fig.3.** The minimum energy profiles and the configurations of different states for CO oxidation reaction on Fe/DG sheet, including (a) the dissociative adsorption of O_2 molecule and (b) $2CO + 2O_{ads}$ reactions by the ER mechanism. Red, green, and black balls represent O, Fe and C atoms, respectively.

Table S1. The adsorption energy (E_{ads} , in eV) of individual CO (or O_2) molecule and coadsorbed $O_2 + CO$ molecules on metal embedded graphene sheets (M-gra, M = Al, Au, Cu, Pd and Fe).

M-gra	CO	O ₂	$O_2 + CO$
Al-gra	0.83	1.57	1.95
Au-gra	1.53	1.34	1.82
Cu-gra	1.71	2.67	3.29
Pd-gra	1.07	1.13	1.90
Fe-gra	1.13	1.88	2.10

Fig. S2(a)-(b)

Fig. S3(a)-(c)