Enzymatic synthesis of 2,5-furandicarboxylic acidbased semi-aromatic polyamides: enzymatic polymerization kinetics, effect of diamine chain length and thermal properties

Yi Jiang, Dina Maniar, Albert J. J. Woortman, and Katja Loos

Supporting Information

Table S1. Molecular weights and degrees of polymerization of the crude poly(octamethylene furanamide) (PA8F) from the one-stage enzymatic polymerization of DMFDCA (dimethyl 2,5-furandicarboxylate) and 1,8-ODA (1,8-octanediamine) at 90 °C in toluene

Polymerization Time	${}^{ar{M}_n}$ (g/mol) a	${\bar M}_w$ (g/mol) ^a	${}^{ar{M}_p}$ (g/mol) a	DP _{nb}	DP _{wb}	DP _{pb}
2 h	500	600	500	4	5	4
6 h	600	900	600	5	7	5
9 h	800	1700	1000	6	13	8
24 h	1800	6400	5600	14	48	42
35 h	1800	8600	5500	14	65	42
72 h	2000	10700	6600	15	81	50

 ${}^{a} \overline{M}_{n}$ (number-average molecular weight), ${}^{\overline{M}_{w}}$ (weight-average molecular weight) and ${}^{\overline{M}_{p}}$ (peak molecular weight) were determined by SEC (conventional calibration), using LiBr/DMSO as the eluent; ${}^{b} \overline{DP}_{n}$ (number-average degree of polymerization) $= 2 \times \overline{M}_{n}/M_{repeating unit}$, ${}^{DP_{w}}$ (weight-average degree of polymerization) $= 2 \times \overline{M}_{w}/M_{repeating unit}$, and ${}^{DP_{p}}$ (peak degree of polymerization, the major retention volume) $= 2 \times \overline{M}_{p}/M_{repeating unit}$, where ${}^{M_{repeating unit}}$ is the molecular mass of the repeating units.

Defending Values (mJ)	Mala a las Wala (a / a a) g	ភិក	Cumulative Weight Fraction (%) ^c					
Retention volume (mL)	Molecular weight (g/mol) "	Dro	2 h	6 h	9 h	24 h	35 h	72 h
33.2 - 34.2	200 - 500	2 - 4	37.9	28.1	16.0	5.2	4.8	5.1
32.5 - 33.2	500 - 800	4 - 6	54.2	50.7	24.3	7.1	6.7	6.5
31.1 - 32.5	800 - 2100	6 - 16	7.9	14.2	36.1	16.8	16.2	15.2
29.4 - 31.1	2100 - 5500	16 - 42	0.0	7.0	20.4	31.1	28.4	25.2
24.0 - 29.4	5500 - 67200	42 - 509	0.0	0.0	3.2	39.8	43.5	42.9
22.0 - 24.0	67200 - 178400	509 - 1350	0.0	0.0	0.0	0.0	0.4	5.1
< 31.1	< 2100	< 16	100.0	93.2	76.5	29.3	27.8	26.8
< 29.4	< 5500	< 42	100.0	100	96.8	60.2	56.1	52.0
≥29.4	≥ 5500	≥42	0.0	0.0	3.2	39.8	43.9	48.0

Table S2. Cumulative weight fractions of the crude PA8F from the one-stage enzymatic polymerization of DMFDCA and 1,8-ODA at 90 °C in toluene

^{*a*} Determined by the calibration curve generated by pullulan standards; ^{*b*} $\overline{DP} = 2 \times \frac{Molecular Weight}{M_{repeating unit}}$, where $\frac{M_{repeating unit}}{M_{repeating unit}}$ is the molecular mass of the repeating unit octamethylene furanamide; ^{*c*} Determined by SEC based on the refractive index signal.

Table S3. Results summary: N435-catalyzed polycondensation of DMFDCA and various aliphatic diamines using a one-stage method at 90 °C in toluene

Polyamide	(NMR ^b	SEC ^d				$\mathbf{L}_{\mathbf{r}} = \mathbf{L}_{\mathbf{r}} $	
	X"	${}^{ar{M}_n}$ (g/mol)	${}^{ar{M}_n}$ (g/mol)	${\bar M}_w$ (g/mol)	$D\overline{P}_{wf}$	$\boldsymbol{H}(^{\bar{M}_w/\bar{M}_n})$	Isolation Yield (%)*	
PA4F	4	3030 ^c	12300	15800	152	1.30	7	
PA6F	6	3316	13400	20600	174	1.50	23	
PA8F	8	7800	13400 ^e	48300 ^e	365 ^e	3.60 ^e	53	
PA10F	10	4209	13400	21200	145	1.60	35	
PA12F	12	2062	9500	19900	124	2.10	16	

^{*a*}X is the number of the methylene units in the diamine segments, which defines the chain length of the tested aliphatic diamines; ${}^{b} \bar{M}_{n}$ (number-average molecular weight) was determined by ¹H NMR according to the method established in our previous report (see *Biomacromolecules* **2015**, 16, (11), 3674-3685); ${}^{c} \bar{M}_{n}$ was calculated from ¹H NMR with the assumption that all the obtained PA4F was terminated by amino groups at the one end and methoxyl groups at the other end; ${}^{d} \bar{M}_{n}$, \bar{M}_{w} (weight-average molecular weight), and D (dispersity, ${}^{\bar{M}_{w}/\bar{M}_{n}}$) were determined by SEC (conventional calibration) using LiBr/DMF (0.01M) as the eluent; ${}^{e} \bar{M}_{n}$, \bar{M}_{w} and D of PA8F were determined by SEC (universal calibration) using LiBr/DMSO as the eluent; f $DP_{w} = 2 \times {}^{\bar{M}_{w}/M_{repeating unit}}$, where ${}^{M_{repeating unit}}$ is the molecular mass of the repeating units; g Yield of purified products.

Figure S1. SEC elution curves of the obtained FDCA-based semi-aromatic polyamides (PAXF) produced via the one-stage enzymatic polymerization in toluene at 90 °C. The eluent was DMF with LiBr. X presents the methylene units in the diamine segments.

Figure S2. MALDI-ToF MS spectrum of the obtained poly(butylene furanamide) (PA4F) with detailed peak interpretation. PA4F was produced via the one-stage enzymatic polymerization of DMFDCA and 1,4-butanediamine (1,4-BDA) in toluene at 90 °C.

Figure S3. MALDI-ToF MS spectrum of the obtained poly(hexamethylene furanamide) (PA6F) with detailed peak interpretation. PA6F was produced via the one-stage enzymatic polymerization of DMFDCA and 1,6-hexanediamine (1,6-HDA) in toluene at 90 °C.

Figure S4. MALDI-ToF MS spectrum of poly(octamethylene furanamide) (PA8F) with detailed peak interpretation. PA8F was produced via the one-stage enzymatic polymerization of DMFDCA and 1,8-ODA in toluene at 90 °C.

Figure S5. MALDI-ToF MS spectrum of the obtained poly(decamethylene furanamide) (PA10F) with detailed peak interpretation. PA10F was produced via the one-stage enzymatic polymerization of DMFDCA and 1,10-decanediamine (1,10-DDA) in toluene at 90 °C.

Figure S6. DSC curves of the obtained PA4F. PA4F ($\bar{M}_n = 12300 \text{ g/mol}, \bar{M}_w = 15800 \text{ g/mol}$) was produced via the one-stage enzymatic polymerization of DMFDCA and 1,4-BDA in toluene at 90 °C.

Figure S7. DSC curves of the obtained PA6F. PA6F ($\bar{M}_n = 13400 \text{ g/mol}, \bar{M}_w = 20600 \text{ g/mol}$) was produced via the one-stage enzymatic polymerization of DMFDCA and 1,6-HDA in toluene at 90 °C.

Figure S8. DSC curves of the obtained PA8F. PA8F ($\bar{M}_n = 13400 \text{ g/mol}, \bar{M}_w = 48300 \text{ g/mol}$) was produced via the one-stage enzymatic polymerization of DMFDCA and 1,8-ODA in toluene at 90 °C.

Figure S9. DSC curves of the obtained PA10F. PA10F ($\bar{M}_n = 13400 \text{ g/mol}$, $\bar{M}_w = 21200 \text{ g/mol}$) was produced via the one-stage enzymatic polymerization of DMFDCA and 1,10-DDA in toluene at 90 °C.