1 SUPPLEMENTARY INFORMATION

2 3	The effect of pretreatment on methanesulfonic acid-catalyzed hydrolysis of bagasse to levulinic acid, formic acid, and furfural
4	
5	Darryn W. Rackemann*, John P. Bartley, Mark D. Harrison and William O.S. Doherty
6	Centre for Tropical Crops and Biocommodities, Queensland University of Technology,
7	Brisbane, Australia
8	*Corresponding authors
9	Postal address: GPO Box 2432, 2 George St, Brisbane, QLD 4001, Australia.
10	d.rackemann@qut.edu.au

Catalyst (M)	Feed (wt%)	Temp. (°C)	Time (min)	Furfural (mol%ª)	Formic acid (mol%ª)	Levulinic acid (mol%ª)	Solids (wt% feed)
0.1	3.68	160	20	33.7	3.6	0.2	58.9
0.1	3.68	160	40	51.4	0.0	0.0	59.9
0.1	1.84	160	60	95.5	11.8	4.2	62.5
0.1	3.68	160	80	62.6	7.5	2.1	54.0
0.3	3.68	180	20	46.0	64.7	48.3	38.6
0.3	3.68	180	30	41.0	64.4	49.1	37.4
0.3	3.68	180	40	18.5	76.9	56.5	40.9
0.1	1.84	200	20	64.7	62.8	51.4	48.1
0.1	1.84	200	60	16.3	85.8	62.1	36.3
0.5	1.84	200	20	9.2	73.0	59.5	21.1
0.5	1.84	200	60	0.0	58.8	59.1	40.1
0.06	3.68	180	40	78.2	17.4	9.8	45.1
0.3	3.68	180	40	18.5	76.9	56.5	40.9
0.75	3.68	180	40	3.0	72.7	59.9	44.0
0.5	3.68	160	20	67.4	9.6	4.3	54.0
0.5	3.68	180	20	19.8	73.1	55.7	38.5
0.5	3.68	200	40	0.0	55.1	52.7	40.5
0.3	2.30	180	40	33.5	73.5	63.5	38.2
0.3	2.63	180	40	30.3	73.3	57.7	38.4
0.3	3.46	180	40	37.8	68.6	58.6	40.9
0.3	3.68	180	40	18.5	76.9	56.5	40.9
0.3	3.77	180	40	30.0	72.6	52.3	40.1
0.3	4.19	180	40	14.6	74.1	53.6	46.6
0.2	3.68	180	20	84.8	35.9	28.2	28.8
0.2	3.68	180	20	76.4	39.6	31.6	29.4
0.2	3.68	180	20	84.1	36.2	28.4	47.5
0.2	3.68	180	40	54.6	68.5	58.6	39.5
0.5	1.84	200	20	7.4	68.3	52.9	39.3
0.5	1.84	200	20	14.3	74.9	61.8	39.4

1 Table S1 Levulinic acid and furfural yields from acid-catalyzed reaction of bagasse

2 ^a Based on pentose/hexose sugar content (anhydro-correction).

3 Note: Differences between duplicate results were $\pm 6.4\%$ for furfural, $\pm 11.3\%$ for formic acid, $\pm 8.3\%$ for

4 levulinic acid and $\pm 2.5\%$ for solid residue.

	0.1 M MSA, 180 °C, 20 min (2 wt% feed)			0.3 M MSA, 180 °C, 40 min (3 wt% feed)			0.5 M MSA, 200 °C, 20 min (3 wt% feed)		
Sample	Furfural yield (mol%ª)	Levulinic acid yield (mol% ^a)	Solids (wt% feed)	Furfural yield (mol%ª)	Levulinic acid yield (mol% ^a)	Solids (wt% feed)	Furfural yield (mol%ª)	Levulinic acid yield (mol% ^a)	Solids (wt% feed)
Cellobiose				n.d.	58.8	11.0	n.d.	63.4	15.2
Avicel				n.d.	56.9	14.7	n.d.	57.3	25.4
Solka-Floc	n.d.	5.7	39.2	n.d.	57.7	16.8	n.d.	61.2	21.1
IL	66.3	7.6	50.7	n.d.	63.0	18.8	0.0	60.2	22.7
EG	73.0	10.0	42.6	14.9	57.8	21.2	2.7	60.0	26.8
Soda low lignin	88.3	6.7	55.8	26.9	68.9	29.6	10.3	76.8	24.6
Soda med lignin	72.2	8.5	46.1	34.0	61.5	31.1	6.4	64.6	34.7
Soda high lignin	73.7	6.6	51.8	34.6	61.0	31.6	14.3	67.7	36.7
Bagasse	87.8	4.5	55.3	35.6	62.2	43.4	14.3	61.8	39.4
Acid	62.1	13.4	68.7	29.3	60.3	50.1	0.0	63.2	48.0

1Table S2Levulinic acid, furfural and solid yields from acid-catalyzed reaction of2various types of cellulosics

3 ^a Based on pentose/hexose sugar content (anhydro-correction). n.d. not detected.

4 Note: errors $\pm 10\%$ for furfural, $\pm 11\%$ for levulinic acid, and $\pm 12\%$ for solid residue.

		Lev	ulinic acid		Furfural			
Factors		Coded factor	F value	P-value	Coded factor	F value P-value		
Model/Intercept	a_0	67.66	13.42	< 0.0001	-25.79	42.99	< 0.0001	
Acid Conc.	a_1	39.00	13.19	0.0015	-77.88	42.09	< 0.0001	
Feed Conc.	a ₂	2.77	0.08	0.7868	-55.96	15.31	0.0012	
Temp	a_3	25.70	47.11	< 0.0001	-91.75	12.63	0.0026	
Time	a_4	1.13	0.10	0.753	-67.71	10.76	0.0047	
Acid*Feed	a ₁₂	30.48	3.10	0.0922	-72.64	21.13	0.0003	
Acid*Temp	a ₁₃	-22.18	18.51	0.0003	-18.40	32.73	< 0.0001	
Acid*Time	a ₁₄	-16.39	6.71	0.0167	-	-	-	
Feed*Temp	a ₂₃	-	-	-	-69.53	4.71	0.0453	
Feed*Time	a ₂₄	-	-	-	-59.97	4.61	0.0475	
Acid ²	a ₁₁	-22.16	43.47	< 0.0001	11.52	4.69	0.0459	
Temp ²	a ₄₄	-25.55	34.75	< 0.0001	-	-	-	
Time ²	a ₅₅	16.89	13.17	0.0015	22.89	22.03	0.0002	
		Adjusted R ²		0.7951	Adjusted R ²		0.9417	
	Predicted R ²			0.4911	Predicted R ²		0.8875	
		Adequate precis	sion	13.523	Adequate precision		19.959	
		Lack of fit		0.149	Lack of fit	0.404		

1 Table S3 RSM model for levulinic acid and furfural yields from soda low lignin pulp

4 Fig. S1. FTIR difference spectra (compared to bagasse) of the pulp (fiber) after soda
 5 high lignin, soda medium lignin and soda low pretreatment

4 Fig. S2. FTIR difference spectra (compared to bagasse) of the pulp (fiber) after acid
 5 pretreatment, EG pretreatment and IL pretreatment

1

2

Fig. S3. FTIR difference spectra of acid hydrolysis residues (3 wt% feed, 0.3 M MSA, 5 180 °C, 40 min) compared to feed material for soda high lignin, soda medium 6 lignin and EG pulps

Fig. S4. FTIR difference spectra of acid hydrolysis residues (3 wt% feed, 0.3 M MSA, 180 °C, 40 min) compared to feed material for IL pulp, Solka-Floc and Avicel

5 Fig. S6. Proton NMR spectra of the anomeric region of acid hydrolysis residue of 6 biomass (3 wt% feed, 0.3 M MSA, 180 °C, 40 min)

2 Fig. S7. Proton NMR spectra of the aromatic region of acid hydrolysis residue of
 3 biomass (3 wt% feed, 0.3 M MSA, 180 °C, 40 min)

2 Fig. S8. COSY NMR spectrum of the acid hydrolysis residue of bagasse (3 wt% feed,
3 0.3 M MSA, 180 °C, 40 min)

Fig. S8. HSQC NMR spectrum of the acid hydrolysis residue of bagasse (3 wt% feed,
 0.3 M MSA, 180 °C, 40 min)