Supplementary Information

Effect of Subcritical Water on Homogeneous Catalysis of Used Cooking Oil

Hydrolysis

Ong, Lu Kia, Tran Nguyen, Phuong Lanb, Soetaredjo, Felycia Edic, Ismadji, Suryadib,*, Ju, Yi-

Hsu^{a,**}

^a. Department of Chemical Engineering, National Taiwan University of Science and Technology,

43, Keelung Rd., Sec. 4, Taipei 10607, Taiwan

^{b.} Department of Mechanical Engineering, Can Tho University, 3-2 Street, Can Tho City,

Vietnam

^c. Department of Chemical Engineering, Widya Mandala Surabaya Catholic University,

Kalijudan 37, Surabaya, Indonesia

*Corresponding author: Suryadi Ismadji, suryadiismadji@yahoo.com

**Corresponding author: Yi-Hsu Ju, e-mail address: yhju@mail.ntust.edu.tw, Tel.: +886 2 2737

6612, Fax: +886 2 2737 6644

ak area) 0.15 0.66
0.15 0.66
0.66
32.13
1.81
0.04
23.30
39.42
1.32
0.10
0.04
0.29
0.04
0.70

Table S1. Fatty acid profile of used cooking oil

Source	Degree of	Adjusted	Adjusted	F-value	<i>p</i> -value
	Freedom	SS	MS		
System	2	34771.4	17385.7	8735.19	0.000
Gas	1	226.6	226.6	113.85	0.000
Temperature	2	7641.8	3820.9	1919.76	0.000
Added Pressure	3	215.3	71.8	36.06	0.000
System × Gas	2	28.9	14.5	7.26	0.002
System × Temperature	4	2591.3	647.8	325.50	0.000
System × Added Pressure	6	102.0	17.0	8.54	0.000
Gas × Temperature	2	27.0	13.5	6.77	0.003
Gas \times Added Pressure	3	113.6	37.9	19.02	0.000
Temperature × Added	6	13.2	2.2	1.11	0.374
Pressure					
Error	40	79.6	2.0		
Total	71	45810.8			
Model Summary	S	R^2	R^2	R^2	
			(adjusted)	(predicted)	
	1.41078	0.9983	0.9969	0.9944	

Table S2. ANOVA test result on the FA yield with respect to the catalytic system, gas type,

temperature, added pressure, and their interactions

Source	Degree of	Adjusted	Adjusted	F-value	<i>p</i> -value
	Freedom	SS	MS		
Gas	1	1100.0	1100.02	52.86	0.001
Temperature	2	1294.1	647.07	31.09	0.001
Added Pressure	3	1554.5	518.18	24.09	0.001
Gas × Temperature	2	136.4	68.21	3.28	0.109
Gas × Added Pressure	3	644.7	214.89	10.33	0.009
Temperature × Added	6	312.0	52.00	2.50	0.145
Pressure					
Error	6	124.9	20.81		
Total	23	5166.7			
Model Summary	S	R^2	R^2	<i>R</i> ²	
			(adjusted)	(predicted)	
	4.56185	0.9758	0.9074	0.6133	

Table S3. ANOVA test results of the effect of gas type, temperature, added pressure, and their interactions on the Cu removal percentage

Figure S1. Schematic figure of batch subcritical water reactor apparatus

Figure S2. Surface plots of temperature-added pressure-FA yield in FA autocatalyzed system, Cu-catalyzed system, and acid catalyzed system using N₂ (A-C) and CO₂ (D-F)

Figure S3. Soluble CO_2 showed as bubbles on the top of oil layer

Figure S4. CO₂ solubility in the water at studied temperature and added pressure (values were calculated based on the actual pressure)

Figure S5. Three dimensional plot of temperature-added pressure-Cu removal percentage using (A) N_2 and (B) \mbox{CO}_2

Figure S6. Subcritical water properties in FA autocatalytic system (system 1), Cu-catalyzed system (system 2), and acid-catalyzed system (system 3) at various temperatures and additional pressures using N₂ (gas 1) and CO₂ (gas 2)