## **Supporting Information**

## A FRET-based fluorescent approach for labetalol sensing using calix[6]arene functionalized MnO<sub>2</sub>@graphene as receptor

Hanzhang Ye<sup>a, 1</sup>, Long Yang<sup>a, 1</sup>, Genfu Zhao<sup>a</sup>, Yanqiong Zhang<sup>a</sup>, Xin Ran<sup>a</sup>, Shilian

Wu<sup>a</sup>, Suo Zou<sup>a</sup>, Xiaoguang Xie<sup>a, \*</sup>, Hui Zhao<sup>b, \*</sup>, Can-Peng Li<sup>a, \*</sup>

<sup>a</sup> School of Chemical Science and Technology, Yunnan University, Kunming 650091,

PR China.

<sup>b</sup> Laboratory for Conservation and Utilization of Bio-resource, Yunnan University,

Kunming 650091, PR China.

<sup>1</sup>These authors contributed equally to this work.

\* Corresponding authors.

Fax or Tel: 86-871-65031119. E-mail: xgxie@ynu.edu.cn (X. Xie);

zhaohui@yun.edu.cn (H. Zhao); lcppp1974@sina.com (C.-P. Li).



Fig. S1 The chemical structure of SCX6.







Fig. S3 The photograph of SCX6–MnO<sub>2</sub>@RGO aqueous dispersion (1.0 mg mL<sup>-1</sup>) after being stored for 6 months.



Fig. S4 Job's continuous variation plot of the SCX6/labetalol complex.



**Fig. S5** Fluorescence spectra of 10  $\mu$ M R6G in the absence and presence of 1  $\mu$ g mL<sup>-1</sup> MnO<sub>2</sub>, RGO, MnO<sub>2</sub>@RGO, and SCX6–MnO<sub>2</sub>@RGO.



**Fig. S6 (A)** The effect of increasing concentrations of  $MnO_2@RGO$  (concentrations ranging from 0 to 6 µg mL<sup>-1</sup>) on the fluorescence intensity of R6G ( $\lambda ex = 490$  nm). R6G concentration was 10 µM. **(B)** Fluorescence spectra of the MnO<sub>2</sub>@RGO·R6G complex via different concentrations of labetalol. R6G and MnO<sub>2</sub>@RGO concentrations were 10 µM and 6 µg mL<sup>-1</sup>, respectively. The combined solution was mixed by vortexing well for 5 min and then tested.