DFT Studies on the Influence of ligation in optical and redox properties of bimetallic $[Au_4M_2]$ clusters

Manohar P and Ganga Periyasamy*

Department of Chemistry, Centre College Campus, Bangalore University, Bangalore 560001

ganga.periyasamy@gmail.com

Table S1. Computed vibrational frequencies for M-M, M-S and M-P bonds of bare $[Au_4M_2]$, $[Au_4M_2 (SCH_3)_6]$ and $[Au_4M_2 (PH_3)_6]^{2+}$, M=Au, Cu, Ag, Ni, Pd and Pt clusters using CAM-B3LYP functional are given in (cm⁻¹).

Clusters	Bare [Au ₄]	M ₂]	[Au ₄ M ₂ (So	CH ₃) ₆]		[Au ₄ M ₂ (P]	$[H_3)_6]^{+2}$]+2		
	Au-Au	M-M	M-S	M-M	Au-Au	M-P	M-M	Au-Au		
M=Au	32-120	32-120	312-342	13-54	13-54	60-243	33-133	33-133		
M=Cu	38-162	38-260	184-368	11-67	11-46	50-270	40-200	42-133		
M=Ag	27-187	27-192	291-346	10-64	10-70	48-248	62-153	49-153		
M=Ni	28-169	43-226	197-369	15-75	15-75	163-343	73-162	54-233		
M=Pd	32-200	32-221	205-358	9-81	23-74	141-293	61-172	52-163		
M=Pt	15-206	33-206	196-368	16-57	16-105	136-338	76-160	56-160		

Table S2. Structural Parameters (Å) of bare $[Au_4M_2]$ where M=Au, Cu, Ag, Ni, Pd and Pt clusters computed using CAM-B3LYP functional. Calculated Height (average distance between the Au-M and M-Au atoms in outer triangle), Breadth (average distance between the Au-Au and Au-Au in outer triangle) are given. And reported values given in *italics*.^{1,2,3,4,6}

Clusters [Au ₄ M ₂]	Au-M	M-M	Au-M-M	M-Au-M'	Height	Breadth
M=Au	2.678 2.704	2.867 2.903	57.69	64.69	5.35	5.35
M=Cu	2.523	2.606	58.60	62.80	5.04	5.28
M=Ag	2.705 2.703	2.922	57.19	65.61	5.41	5.30
M=Ni	2.525 2.270	2.213	63.40	53.19	5.03	5.26
M=Pd	2.725 2.640	2.651	60.46	59.21	5.28	5.28
M=Pt	2.643 2.640	4.496	61.58	56.81	5.28	5.30

Figure S1. Computed HOMO and LUMO of bare [Au₄M₂] BMGC, where M= Au, Cu, Ag, Ni, Pd and Pt (orbitals are plotted with isocontour value: 0.04 Å^{-3}).

Figure S2. Computed HOMO and LUMO of ligated $[Au_4M_2(SCH_3)_6]$ BMGC, where M= Au, Cu, Ag, Ni, Pd and Pt (orbitals are plotted with isocontour value: 0.04 Å⁻³).

 $[Au_{4}Pd_{2}(PH_{3})_{6}]^{2*}-HOMO \quad [Au_{4}Pd_{2}(PH_{3})_{6}]^{2*}-LUMO \quad [Au_{4}Pt_{2}(PH_{3})_{6}]^{2}-HOMO \quad [Au_{4}Pt_{2}(PH_{3})_{6}]^{2*}-LUMO \quad [Au_{4}Pt_{2}(PH_{3})_{6}]^{2*}-HOMO \quad [Au_{4}Pt_{2}(PH_$

Figure S3. Computed HOMO and LUMO of ligated $[Au_4M_2(PH_3)_6]$ BMGC, where M= Au, Cu, Ag, Ni, Pd and Pt (orbitals are plotted with isocontour value: 0.04 Å⁻³).

Table S3. Computed redox properties of bare $[Au_4M_2]$ where M=Au, Cu, Ag, Ni, Pd and Pt clusters using Polarizable Continuum Model (PCM) in Water, DMSO and DCM. Calculated AIP, AEA, $\Delta = E_{LUMO}-E_{HOMO}$ are given in (eV).

Cluster	Media	AIP	AEA	Δ
	Water	5.84	2.65	5.89
Auc	DMSO	5.86	2.63	5.95
1140	DCM	6.08	2.49	5.90
	Water	5.84	3.06	5.85
Au ₄ Cu ₂	DMSO	5.92	3.08	5.91
	DCM	6.16	1.97	5.86
	Water	5.03	2.90	5.79
Au ₄ Ag ₂	DMSO	5.11	2.92	5.85
	DCM	5.38	2.81	5.82
	Water	3.07	4.32	5.32
Au ₄ Ni ₂	DMSO	3.12	4.21	5.38
	DCM	2.80	4.08	5.35
	Water	4.55	4.72	3.98
Au ₄ Pd ₂	DMSO	4.62	4.76	4.02
	DCM	4.92	4.66	3.96
	Water	4.64	3.90	4.71
Au ₄ Pt ₂	DMSO	4.67	3.94	4.76
	DCM	4.87	3.87	4.73

Clusters	Au-L	Au-L		M-L		L-Au-L		L-M-L		M-M		M-M-L	
$\left[\operatorname{Au}_{4}\operatorname{M}_{2}(\operatorname{L})_{6}\right]^{n}$	L=S	L=P	L=S	L=P	L=S	L=P	L=S	L=P	L=S	L=P	L=S	L=P	
M=Au	2.360 2.380	2.404	2.360	2.402	179	-	179	-	-	2.708	-	139	
M=Cu	2.356	2.422	2.226	2.336	179	-	177	-	-	2.702	-	140	
M=Ag	2.359	2.422	2.440	2.543	178	-	178	-	-	3.069	-	138	
M=Ni	2.201	2.390	2.238	2.191	178	-	100	-	3.203	2.301	142	132	
M=Pd	2.363	2.347	2.413	2.307	171	-	154	-	2.824	2.801	145	133	
M=Pt	2.376	2.339	2.279	2.266	176	-	163	-	2.602	2.689	172	134	

Table S4. Structural Parameters, bond length (Å), bond angle (°) of ligated $[Au_4M_2(L)_6]^n$ where n=0 for L=SCH₃ and n=+2 for L=PH₃, M=Au, Cu, Ag, Ni, Pd and Pt clusters computed using CAM-B3LYP functional. And reported values are given in *italics*.⁵

Table S5. Computed natural charge (e) values for ligated $[Au_4M_2(SCH_3)_6]$ and $[Au_4M_2(PH_3)_6]^{2+}$ where M=Au, Cu, Ag, Ni, Pd and Pt clusters using CAM-B3LYP functional.

Clusters	[Au ₄ M ₂ (SCI	H ₃) ₆]		$[Au_4M_2(PH_3)_6]^{+2}$			
	Au	М	S	Au	М	Р	
M=Au	-0.28	-0.28	0.22	0.11	-0.16	0.10	
M=Cu	-0.24	0.45	0.30	0.08	0.11	0.06	
M=Ag	-0.25	0.51	0.31	0.05	0.20	0.06	
M=Ni	-0.30	0.04	0.10	0.17	-0.19	0.12	
M=Pd	-0.32	0.04	0.24	0.20	-0.26	0.13	
M=Pt	-0.33	0.05	0.20	0.22	-0.48	0.20	

Table S6. Computed redox properties of ligated $[Au_4M_2(L)_6]^{+n}$, M=Au, Cu, Ag, Ni, Pd and Pt clusters using Polarizable Continuum Model(PCM) in Water, DMSO and DCM. Calculated AIP, AEA, Δ =E_{LUMO}-E_{HOMO} are given in (eV).

		[Au ₄ M ₂ (SC	H ₃) ₆]		$[Au_4M_2(PH_3)_6]^{+2}$			
Clusters	Media	AIP	AEA	Δ	AIP	AEA	Δ	
M=Au	Water	6.30	1.83	7.82	6.00	3.00	3.65	
	DMSO	6.35	1.81	7.82	6.13	3.06	3.69	
	DCM	6.53	1.61	7.81	6.82	3.39	3.68	
M=Cu	Water	7.95	1.20	7.74	5.44	2.65	3.48	
	DMSO	7.97	1.19	7.73	5.57	2.71	3.39	
	DCM	8.41	1.03	7.73	6.27	3.07	3.48	
M=Ag	Water	7.32	1.54	7.88	5.19	2.49	3.44	
	DMSO	7.34	1.53	7.90	5.32	2.55	3.47	
	DCM	7.52	1.39	7.91	6.04	2.91	3.44	
M=Ni	Water	745	3.50	4.77	4.43	3.58	2.80	
	DMSO	7.68	2.55	4.76	4.55	3.66	2.69	
	DCM	8.93	3.28	4.74	5.33	4.03	2.71	
M=Pd	Water	4.55	3.76	4.51	5.45	3.23	3.10	
	DMSO	4.57	3.77	4.59	5.59	3.30	3.14	
	DCM	4.79	3.58	4.60	6.38	3.66	3.13	
M=Pt	Water	5.12	5.07	4.03	5.29	2.92	3.28	
	DMSO	5.83	5.06	4.38	5.43	4.37	3.38	
	DCM	5.95	5.06	4.30	6.22	3.35	3.32	

Redox potential calculations

The standard reduction potential calculations were performed in solution (water as solvent) based on thermochemical Born-Haber cycle illustrated in scheme 1 by Cramer and Truhlar.⁷ The complete scheme has been splitted into two one electron processes labelled as oxidation (ionization) and reduction (electron affinity) cycles separately.

$$[Au_4M_2L_6]^{n+0} \xrightarrow{-e} [Au_4M_2L_6]^{n-1}$$
----Oxidation cycle

$$[Au_4M_2L_6]^{n+0} \xrightarrow{+e} [Au_4M_2L_6]^{n+1}$$
 -----Reduction Cycle

Where, n=number of electrons, M= Au, Ag, Cu, Ni, Pt, Pd and L= SCH₃ and PH₃

Here, $\Delta G_{AIP(gas)}$ and $\Delta G_{AEA(gas)}$ are the adiabatic free energy changes during the oxidation(ionization)/reduction(electron affinity) of BMGC in the gas phase. And the standard state free energy of solvation are calculated using following equation for oxidised and reduced species,

 $\Delta G_{\rm S}^{\rm ox1/red1/ox2/red2} = G_{\rm ox1/red1/ox2/red2}^{\rm Solv} - G_{\rm ox1/red1/ox2/red2}^{\rm Gas}$ $\Delta \Delta G_{\rm IP} = \Delta G_{\rm S}^{\rm ox1} - \Delta G_{\rm S}^{\rm red1}$ $\Delta \Delta G_{\rm EA} = \Delta G_{\rm S}^{\rm red2} - \Delta G_{\rm S}^{\rm ox2}$ $E_{IP/EA}^{o} = \frac{\Delta \Delta G_{IP/EA} + \Delta \Delta G_{AIP/AEA} + E_{SHE}^{o}}{nF}$

Where E^{o}_{SHE} is the Standard hydrogen electrode redox potential (-4.28) in eV, n is number of electrons and always considered as one and F is a Faraday constant.

Table S7. Computed standard redox potentials (V) for one electron oxidation/reduction processes of bare and ligated bimetallic gold nanoclusters calculated using Born-Haber cycle.

[Au ₄ M ₂]			[Au ₄ M ₂ (SCH ₃) ₆]			[Au ₄ M ₂ (PH ₃) ₆] ⁺²		
	E^{o}_{IP}	E^{o}_{EA}		E ^o _{IP}	$\mathrm{E}^{o}_{\mathit{E\!A}}$		$\mathrm{E}^{o}_{I\!P}$	$\mathrm{E}^{o}_{\mathit{E\!A}}$
M=Au	1.38	-1.71	M=Au	2.10	-2.38	M=Au	1.28	-1.82
M=Cu	1.43	-1.15	M=Cu	3.61	-2.10	M=Cu	1.25	-1.75
M=Ag	1.19	-1.31	M=Ag	3.10	-2.46	M=Ag	1.18	-1.46
M=Ni	0.57	-0.26	M=Ni	1.75	-0.54	M=Ni	1.23	-0.81
M=Pd	0.27	-0.54	M=Pd	1.06	-0.81	M=Pd	1.30	-1.15
M=Pt	0.10	-0.34	M=Pt	1.55	-0.97	M=Pt	1.05	-1.25

References

1. G. Jian-Jun, Y. Ji-Xian and D. Dong, *Physica B*, 2005, **367**, 158-158

2. H. K. Yuan, a. L. Kuang, C. L. Tian and H. Chen, AIP Adv., 2014, 4, 037107-037107

3. V. G. Yarzhemsky, Y. V. Norov, S. V. Murashov, C. Battocchio, I. Fratoddi, I. Venditti and G. Polzonetti, *Inorg. Mater.*, 2010, **46**, 924-930

4. Y. R. Zhao, X. Y. Kuang, B. B. Zheng, Y. F. Li and S. J. Wang, J. Phys. Chem. A., 2011, 115, 569-576.

5. B. M. Barngrover and C. M. Aikens, J. Phys. Chem. Lett., 2011, 2, 990-994.

6. S. J. Wang, X. Y. Kuang, Y. F. Li and Y. R. Zhao, Phys. Chem. Chem. Phys., 2011, 13, 10119-10130.

7. P. Jaque, A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. C., 2007, 111, 5783-5799.