T-Hg²⁺-T metallo-base pair-mediated dual amplification fluorescent strategy for the selective and sensitive detection of Hg²⁺

Haiping Wei^a, Lei Wang^b, Xiaowen Xu^a, Jing Zhu^a, Wei Jiang^{a,*}

^a Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P.R. China
^b School of Pharmaceutical Sciences, Shandong University, 250012 Jinan, P. R.

China

Corresponding author: Tel: 86-531-88363888; fax: 86-531-88564464.

E-mail: wjiang@sdu.edu.cn

Name	Sequence (from 5' to 3')				
H-DNA3	CAT CTC TTC TCC GAG CCG GTC GAA ATA GTG GGT AAT GAA				
	GAG ATG GTT TCG				
A-DNA3	CGT TTC CAT CTC TTC AAA AAG				
H-DNA4	<u>CAT CTC TTC</u> TCC GAG CCG GTC GAA ATA GTG GGT AAT <u>GAA</u>				
	GAG ATG GTT TCG G				
A-DNA4	CCG TTT CCA TCT CTT CAA AAA G				
H-DNA5	<u>CAT CTC TTC</u> TCC GAG CCG GTC GAA ATA GTG GGT AAT <u>GAA</u>				
	GAG ATG GTT TCG GG				
A-DNA5	CCC GTT TCC ATC TCT TCA AAA AG				
H-DNA6	<u>CAT CTC TTC</u> TCC GAG CCG GTC GAA ATA GTG GGT AAT <u>GAA</u>				
	GAG ATG GTT TCG GGG				
A-DNA6	CCC CGT TTC CAT CTC TTC AAA AAG				
H-DNA7	<u>CAT CTC TTC</u> TCC GAG CCG GTC GAA ATA GTG GGT AAT <u>GAA</u>				
	GAG ATG GTT TCG GGG G				
A-DNA7	CCC CCG TTT CCA TCT CTT CAA AAA G				
H-DNA8	<u>CAT CTC TTC</u> TCC GAG CCG GTC GAA ATA GTG GGT AAT <u>GAA</u>				
	GAG ATG GTT TCG GGG GG				
A-DNA8	CCC CCC GTT TCC ATC TCT TCA AAA AG				
MB	FAM <u>-CCA CCA C</u> AC TGA AAT TGA CCC ACT AT <mark>rA</mark> GGA AGA				
	GAT GTT ACG AGG CG <u>G TGG TGG</u> -Dacyl				

Table S1 Sequences of oligonucleotides used in this work.

^a The rose domains in H-DNA are DNAzyme sequences. The gold domains and the blue domains in both H-DNA and A-DNA are T-rich sequences and complementary sequences, respectively. And the coffee domains in A-DNA are protection sequences. The red rA of the MB denotes adenosine ribonucleotide at that position. The underlined sequences in H-DNA and MB present the stem of the structures.

Fig. S1. The effect of the pH values of the TM buffer on Fluorescence Increase. Conditions : $C_{Mg^{2^+}} = 5.0 \times 10^{-3} \text{ mol}\cdot\text{L}^{-1}$, $C_{A-DNA} = 1.0 \times 10^{-7} \text{ mol}\cdot\text{L}^{-1}$, $C_{H-DNA} = 1.2 \times 10^{-7} \text{ mol}\cdot\text{L}^{-1}$, $C_{MB} = 1.8 \times 10^{-7} \text{ mol}\cdot\text{L}^{-1}$, Exo III = 50 U. T-Hg²⁺-T reaction : 60 min, Target cycle : 120 min, DNAzyme cycle : 30 min.

Fig. S2. The effect of the ion strengths of the TM buffer on Fluorescence Increase. Conditions : pH = 8.50, $C_{A-DNA} = 1.0 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$, $C_{H-DNA} = 1.2 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$, $C_{MB} = 1.8 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$, Exo III = 50 U. T-Hg²⁺-T reaction : 60 min, Target cycle : 120 min, DNAzyme cycle : 30 min.

Fig. S3. The effect of the A-DNA concentrations on Fluorescence Increase. Conditions : pH = 8.50, $C_{Mg^{2+}} = 5.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$, $C_{H-DNA} = 1.2 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$, $C_{MB} = 1.8 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$, Exo III = 50 U. T-Hg²⁺-T reaction : 60 min, Target cycle : 120 min, DNAzyme cycle : 30 min.

Fig. S4. The effect of the H-DNA concentrations on Fluorescence Increase. Conditions : pH = 8.50, $C_{Mg^{2+}} = 5.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$, $C_{A-DNA} = 1.0 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$, $C_{MB} = 1.8 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$, Exo III = 50 U. T-Hg²⁺-T reaction : 60 min, Target cycle : 120 min, DNAzyme cycle : 30 min.

Fig. S5. The effect of the amounts of Exo III on Fluorescence Increase. Conditions : pH = 8.50, $C_{Mg^{2+}} = 5.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$, $C_{A-DNA} = 1.0 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$, $C_{H-DNA} = 1.2 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$, $C_{MB} = 1.8 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$. T-Hg²⁺-T reaction : 60 min, Target cycle : 120 min, DNAzyme cycle : 30 min.

Fig. S6. The effect of the MB concentrations on Fluorescence Increase. Conditions : pH = 8.50, $C_{Mg^{2+}} = 5.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$, $C_{A-DNA} = 1.0 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$, $C_{H-DNA} = 1.2 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$, Exo III = 50 U. T-Hg²⁺-T reaction : 60 min, Target cycle : 120 min, DNAzyme cycle : 30 min.

Table S2. Detection of Hg²⁺ in environmental water samples using the proposed strategy and ICP-MS method^a.

Sample Name	Added (×10 ⁻⁹ mol·L ⁻¹)	Found Mean ^b (×10 ⁻⁹ mol·L ⁻¹)	Found RSD (%) (n = 3)	Found Recovery (%)	ICP-MS Mean ^b (×10 ⁻⁹ mol·L ⁻¹)	ICP-MS RSD (%) (n = 3)	ICP-MS Recovery (%)
Tap Water1	2.5	2.4	3.1	92	2.4	3.8	92
Tap Water2	8.0	8.1	2.3	101	8.3	2.1	104
Lake Water1	2.5	2.3	2.4	92	2.4	4.5	92
Lake Water2	8.0	7.9	1.8	99	8.2	2.5	103
River Water1	2.5	2.4	4.2	96	2.6	3.3	104
River Water2	8.0	7.8	3.7	98	7.9	2.9	99
Waste Water	0	7.0	3.5	NO ^c	7.1	4.0	NO ^c

^a The Hg²⁺ in tap, lake and river water was not detected with the proposed strategy and ICP-MS method.

^b All found values were obtained as an average of three repetitive determinations.

^c The results were not obtainable.