## Supporting Information for

## Enhanced Supercapacitive Performances Functionalized Activated Carbon in Novel Gel Polymer Electrolytes with Ionic Liquid redox-mediated Poly(vinyl alcohol)/Phosphoric Acid

Hyun Seok Jang<sup>a</sup>, C. Justin Raj<sup>a</sup>\*, Won-Gil Lee<sup>a</sup>, Byung Chul Kim<sup>a,b</sup>, Kook Hyun Yu<sup>a</sup>\*

<sup>a</sup> Department of Chemistry, Dongguk University-Seoul, Seoul-100-715, Republic of Korea.

<sup>b</sup>ARC Centre of Excellence for Electromaterials Science, IPRI, AIIM Facility, Innovation

Campus, University of Wollongong, NSW 2522, Australia

\*Corresponding author, E-mail: yukook@dongguk.edu ;cjustinraj@gmail.com; Tel.: +82 2

2260 3709



**Fig. S1.** FTIR spectrum of normal activated carbon (NAC) and nitric acid functonlaized activated carbon (FAC); The functionalized activated carbon shows a small band at 1720 cm<sup>-1</sup> attributable to (-C = O) stretching vibration and a broad band at 1550 cm<sup>-1</sup> represents the (-COO<sup>-</sup>) stretching vibrations associated with the presence of the carboxylic acid group. The broad band at 1250 cm<sup>-1</sup> is corresponds to the (-C - O) stretching vibrations [S1, S2]. These confirm the enhancement of carboxylic functional groups in FAC.



**Fig. S2.** CV curve of 0.1 M [EMIM]BF<sub>4</sub> in aqueous solution, measured using three electrode system (working electrode Pt disk, reference electrode Ag/AgCl; counter electrode Pt wire)



**Fig. S3.** CV curve of normal and functionalized activated carbon electrode in 1M H<sub>2</sub>SO<sub>4</sub> electrolyte at 5 mVs<sup>-1</sup> scan rate, measured using three electrode system (reference electrode Ag/AgCl; counter electrode Pt plate)

Table S1. Specific capacitance value calculated from CV curves of normal and functionalized activated carbon

| Activated<br>Carbon | 5 mV/s | 10 mV/s | 25 mV/s | 50 mV/s | 100 mV/s |
|---------------------|--------|---------|---------|---------|----------|
| NMAC                | 97     | 93      | 88      | 85      | 81       |
| FCAC                | 155    | 147     | 140     | 135     | 126      |



**Fig. S4.** a) CV curve of normal and functionalized activated carbon electrode based SCs in PVA/H<sub>3</sub>PO<sub>4</sub>/[EMIM]BF<sub>4</sub>(50%) electrolytes at 5 mVs<sup>-1</sup> scan rate, measured using full cell configuration; b) variation of specific capacitance with respect to various scan rate for normal and functionalized activated carbon electrode based SCs.



**Fig. S5.** Mesurment of various combination of polymer electrolytes contact angle of carbon electrode



**Fig. S6.** The photograp of 75% and 1005 [EMIM]BF<sub>4</sub>/ PVA/H<sub>3</sub>PO<sub>4</sub> gel polymer electrolyte, highlighting the formation of curdy white precipitate. The dried composition of these electolytes show completly opaque thin films.



**Fig. S7.** Ionic conductivity of completly dried PVA/H<sub>3</sub>PO<sub>4</sub>/[EMIM]BF<sub>4</sub> (0, 25, 50, 75 and 100 wt. %) polymer electrolyte

## References

S1. U. Kirchner, V. Scheer and R. Vogt R, J. Phys. Chem. A, 2000, 104, 8908-8915

S2. P. Dubey, D. Muthukumar, S. Dash, R. Mukopadhyay and S. Sarkar, Pramana J. Phys.

2005, 65(4), 681