Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

DABCO Catalyzed Unusual Formal [4+2] Cycloaddition of 3-acyl (or alkoxycarbonyl)-1,4-enediones with 2,3-butadienoates: An Effective Access to Construct Highly Functionalized Pyrans

Xiang-Suo Meng, Shan Jiang, Xiao-Yun Xu, Qiang-Xian Wu, Yu-Cheng Gu and De-Qing Shi*

Table of Contents

1. General Information	S2
2. Optimization Study	S3
3. Experimental Procedure	S3
3.1 General procedure for preparation of products 3	S3
3.2 Spectra data of products 3	S4
4. Copies of ¹ H NMR and ¹³ C NMR Spectra	S7
5. X-ray structure of product 3q	S25

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to general methods. Flash column chromatography was performed using 200-300 mesh silica gel, and reactions were monitored by thin layer chromatography (TLC). Melting points were determined with a WRS-1B digital melting point apparatus, and the thermometer was uncorrected. ¹H and ¹³C NMR spectra were recorded on a Varian Mercury PLUS 400 or a Varian Mercury PLUS 600 spectrometer in CDCl₃ or DMSO-d₆. Chemical shifts (δ) are reported in parts per million (ppm) relative to the singlet (0 ppm) for tetramethylsilane (TMS). Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, and m = multiplet), and coupling constants, *J*, are reported in hertz. ¹³C NMR chemical shifts are reported in ppm from CDCl₃ (taken as 77.0 ppm). Mass spectra were measured on a Finnigan TRACEMS 2000 (EI-MS) spectrometer. Elementary analysis was taken on a Vario EL III elementary analysis instrument.

3-Acyl(or alkoxycarbonyl)-1,4-enediones **1** were prepared according to the literature ^[1], and 2,3butadienoates **2** were synthesized according to the reported method.^[2]

References

[1] Gao, M.; Yang, Y.; Wu, Y. D.; Deng, C.; Cao, L. P.; Meng, X. G.; Wu, A. X. Org. Lett. 2010, 12, 1856-1859.

[2] (a) Anderson, J. C.; Cubbon, R. j.; Harling, J. D. Tetrahedron: Asymmetry, 2001, 12, 923; (b) Jansch,

H.; Kannenberg, S.; Boche, G. Eur. J. Org. Chem., 2001, 2923.

2. Optimization study

Entry	Catalyst (mol%)	Solvent	Temp(°C)	Time(h)	Yield ^b (%)
1	DABCO (20)	toluene	Room Temp.	24	57
2	DMAP (20)	toluene	Room Temp.	24	trace
3	DBU (20)	toluene	Room Temp.	24	trace
4	TMEDA (20)	toluene	Room Temp.	24	40
5	Et ₃ N (20)	toluene	Room Temp.	24	35
6	Ph ₃ P (20)	toluene	Room Temp.	36	trace
7	<i>n</i> -Bu ₃ P (20)	toluene	Room Temp.	24	trace
8	Me ₃ P (20)	toluene	Room Temp.	24	trace
9	DABCO (20)	CH_2Cl_2	Room Temp.	24	50
10	DABCO (20)	CH ₃ CN	Room Temp.	24	73
11	DABCO (20)	THF	Room Temp.	24	60
12	DABCO (20)	C ₂ H ₅ OH	Room Temp.	12	87
13	DABCO (20)	DMF	Room Temp.	24	63
14	DABCO (20)	DMSO	Room Temp.	24	71
15	DABCO (20)	C ₂ H ₅ OH	-5	40	75
16	DABCO (20)	C ₂ H ₅ OH	0	36	85
17	DABCO (20)	C ₂ H ₅ OH	40	12	79
18	DABCO (20)	C ₂ H ₅ OH	50	12	81
19	DABCO (30)	C ₂ H ₅ OH	Room Temp.	10	90

Table 1 Reaction conditions screening^a

 a Reaction conditions: 1a (0.5 mmol), 2a (0.75 mmol), catalyst in solvent (4.0 mL) , under N_2 atmosphere .

^b Isolated yield.

3. Experimental Procedure

3.1 General procedure for the synthesis of the target compounds 3

Under a N₂ atmosphere, a mixture of 3-acyl(or alkoxycarbonyl)-1,4-enedione **1** (0.5 mmol), 2,3butadienoate **2** (0.75 mmol), DABCO (0.15 mmol) in anhydrous ethanol (3.0 mL) was stirred at room temperature. After the reaction completed (monitored by TLC), the reaction mixture was diluted with water (5 mL) and extracted with EtOAc. The organic layers were combined, and dried over anhydrous Na₂SO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography on silica gel (petroleum ether/EtOAc =15:1) to afford the corresponding **3** in 68-96% yields.

3.2 Spectral Data of Products 3

Ethyl 4,5-dibenzoyl-2-methyl-6-phenyl-4H-pyran-3-carboxylate(3a): White solid; 203 mg, yield 90%; m.p. 135.5-136.9°C; ¹H NMR (400 MHz, CDCl₃) δ = 8.05 (d, J = 7.2 Hz, 2H), 7.47 (t, J = 7.8 Hz, 3H), 7.39 (t, J = 8.0 Hz, 3H), 7.28 (s, 1H), 7.16 (d, J = 7.2 Hz, 1H), 7.01-7.12 (m, 5H), 5.68 (s, 1H), 4.01 (q, J = 7.2 Hz, 2H), 2.55 (s, 3H), 0.95 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.5, 196.3, 165.9, 161.9, 155.6, 137.2, 136.4, 132.9, 132.5, 132.2, 130.0, 129.2, 129.1, 129.0, 128.2, 127.8, 127.7, 112.2, 103.8, 60.5, 42.4, 18.9, 13.6; EI-MS (70 eV): m/z (%) = 452 (M⁺, 1.8), 347 (100), 319 (6.3), 105 (54.7), 77 (32.6). Anal. calcd for C₂₉H₂₄O₅: C 76.98, H 5.35; found: C 77.14, H 5.41.

Ethyl 5-benzoyl-2-methyl-4-(4-methylbenzoyl)-6-phenyl-4H-pyran-3-carboxylate(3b): White solid; 202 mg, yield 87%; m.p. 139.8-140.5°C; ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 7.6 Hz, 2H), 7.18 (d, J = 8.0 Hz, 3H), 7.01 – 7.11 (m, 5H), 5.67 (s, 1H), 4.03 (q, J = 7.2 Hz, 2H), 2.54 (s, 3H), 2.36 (s, 3H), 0.99 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.1, 196.5, 166.1, 161.9, 155.5, 143.8, 137.3, 133.8, 132.6, 132.2, 130.0, 129.5, 129.2, 129.1, 129.0, 127.9, 127.8, 112.4, 103.9, 60.6, 42.4, 21.7, 19.0, 13.8; EI-MS (70 eV): m/z (%) = 466 (M⁺, 1.2), 349 (1.9), 348 (23.4), 347 (100), 319 (2.9), 119 (2.9), 105 (37.3). Anal. calcd for C₃₀H₂₆O₅: C 77.24, H 5.62; found: C 77.02, H 5.53.

Ethyl 5-benzoyl-4-(4-methoxybenzoyl)-2-methyl-6-phenyl-4H-pyran-3-carboxylate(3c): White solid; 193 mg, yield 80%; m.p. 121.2-122.9°C; ¹H NMR (400 MHz, CDCl₃) δ = 8.04 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 7.6 Hz, 2H), 7.24 – 7.29 (m, 2H), 7.17 (t, J = 7.6 Hz, 1H), 7.01-7.09 (m, 5H), 6.86 (d, J = 8.8 Hz, 2H), 5.66 (s, 1H), 4.04 (q, J = 7.6 Hz, 2H), 3.82 (s, 3H), 2.54 (s, 3H), 1.01 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 198.8, 196.6, 166.1, 163.5, 161.9, 155.3, 137.4, 132.6, 132.2, 131.7, 129.9, 129.2, 129.1, 129.0, 127.8, 127.7, 113.5, 112.5, 103.9, 60.6, 55.3, 42.2, 19.0, 13.8; EI-MS (70 eV): m/z (%) = 482 (M⁺, 1.5), 349 (3.2), 348 (23.5), 347 (100), 319 (4.8), 135 (11.9), 106 (3.9), 105 (52.1). Anal. calcd for C₃₀H₂₆O₆: C 74.67, H 5.43; found: C 74.71, H 5.29.

Ethyl 4-([1,1'-biphenyl]-4-carbonyl)-5-benzoyl-2-methyl-6-phenyl-4H-pyran-3-carboxylate(3d): White solid; 214 mg, yield 81%; m.p. 61.8-62.7°C; ¹H NMR (600 MHz, CDCl₃) δ = 8.16 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.49 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.2 Hz, 2H), 7.39 (t, J = 7.2 Hz, 1H), 7.29 (d, J = 7.2 Hz, 2H), 7.18 (t, J = 7.2 Hz, 1H), 7.13 (t, J = 7.2 Hz, 1H), 7.06 (d, J = 7.2 Hz, 2H), 7.05 (t, J = 7.8 Hz 2H), 5.72 (s, 1H), 4.06 (q, J = 7.2 Hz, 2H), 2.57 (s, 3H), 1.00 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.3, 196.5, 166.1, 162.0, 155.9, 145.5, 140.0, 137.3, 135.2, 132.6, 132.3, 130.1, 129.9, 129.3, 129.2, 128.9, 128.1, 127.9, 127.8, 127.3, 127.0, 112.4, 104.0, 60.7, 42.5, 19.1, 13.8; EI-MS (70 eV): m/z (%) = 528.5 (M⁺, 0.8), 349 (2.6), 348 (23.4), 347 (100), 319 (3.3), 152 (10.0), 105 (50.8).Anal. calcd for C₃₅H₂₈O₅: C 79.53, H 5.34; found: C 79.70, H 5.17.

Ethyl 5-benzoyl-4-(4-fluorobenzoyl)-2-methyl-6-phenyl-4H-pyran-3-carboxylate(3e): White solid; 223 mg, yield 95%; m.p. 141.9-142.8°C; ¹H NMR (400 MHz, CDCl₃) δ = 8.11 (dd, J = 8.4, 5.6 Hz, 2H), 7.45 (d, J = 7.6 Hz, 2H), 7.25 (d, J = 7.2 Hz, 2H), 7.18 (t, J = 7.2 Hz, 1H), 7.01-7.09 (m, 7H), 5.62 (s, 1H), 4.04 (q, J = 7.2 Hz, 2H), 2.55 (s, 3H), 1.00 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 199.1, 196.4, 185.5, 166.0, 165.6 (¹J_{CF} = 250 Hz), 162.0, 156.0, 137.3, 132.9, 132.4 (²J_{CF} = 20 Hz), 132.0, 131.9, 130.1, 129.2 (⁴J_{CF} = 3.5 Hz), 127.8 (³J_{CF} = 8.0 Hz), 115.4, 115.2, 112.1, 103.8, 60.7, 42.4, 19.0, 13.8; EI-MS (70 eV): m/z (%) = 470 (M⁺, 0.8), 349 (2.1), 348 (23.5), 347 (100), 319 (6.1), 123 (7.2), 106 (4.6), 105 (65.0). Anal. calcd for C₂₉H₂₃FO₅: C 74.03, H 4.93; found: C 73.85, H 4.78.

Ethyl 5-benzoyl-4-(2-fluorobenzoyl)-2-methyl-6-phenyl-4H-pyran-3-carboxylate (3f): White solid; 200 mg, yield 85%; m.p. 108.1-109.9°C; ¹H NMR (600 MHz, CDCl₃) δ = 7.89 (dd, J = 7.2, 6.0 Hz, 1H), 7.50 (d, J = 7.2 Hz, 2H), 7.44 (dd, J = 12.0, 6.6 Hz, 1H), 7.26 (d, J = 7.8 Hz, 2H), 7.20 (t, J = 7.2 Hz, 1H), 7.15 (t, J = 7.8 Hz, 1H), 7.13 (d, J = 7.2 Hz, 1H), 7.04-7.08 (m, 5H), 5.56 (d, J = 2.4 Hz, 1H), 4.02 (q, J = 7.2 Hz, 2H), 2.54 (s, 3H), 0.99 (t, J = 7.2 Hz, 1H), 7.15 (t, J = 7.2 Hz, 2H), 2.54 (s, 3H), 0.99 (t, J = 7.2 Hz, 1H), 7.15 (t, J = 7.2 Hz, 2H), 2.54 (s, 3H), 0.99 (t, J = 7.2 Hz, 1H), 7.15 (t, J = 7.2 Hz, 2H), 2.54 (s, 3H), 0.99 (t, J = 7.2 Hz, 2H), 0.54 (s, 3H), 0.99 (t, J = 7.2 Hz, 2H), 0.54 (s, 3H), 0.99 (t, J = 7.2 Hz, 2H), 0.54 (s, 3

7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ = 198.3, 196.0, 166.0, 161.9, 155.7, 137.1, 134.2, 134.1, 132.4 (²J_{CF} = 21 Hz), 131.2, 130.1, 129.2, 129.1, 127.8 (²J_{CF} = 20 Hz), 125.9, 125.0 (¹J_{CF} = 240 Hz), 116.7, 116.5, 112.1, 110.0, 103.7, 60.6, 46.0, 18.9, 13.7; EI-MS (70 eV): m/z (%) = 470 (M⁺, 1.5), 349 (2.0), 348 (23.4), 347 (100), 319 (5.2), 123 (6.3), 105 (53.7). Anal. calcd for C₂₉H₂₃FO₅: C 74.03, H 4.93; found: C 74.21, H 4.99.

Ethyl 5-benzoyl-4-(2-chlorobenzoyl)-2-methyl-6-phenyl-4H-pyran-3-carboxylate (3g): White solid; 197 mg, yield 81%; m.p. 147.5-148.2°C; ¹H NMR (600 MHz, CDCl₃) δ = 8.03 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 7.2 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 7.2 Hz, 2H), 7.17 (t, J = 7.2 Hz, 1H), 7.11 (t, J = 7.2 Hz, 1H), 7.03-7.08 (m, 4H), 5.60 (s, 1H), 4.04 (q, J = 7.8 Hz, 2H), 2.55 (s, 3H), 1.00 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ = 199.7, 196.4, 166.0, 162.0, 156.2, 139.4, 137.2, 136.9, 134.9, 132.4, 132.3, 130.7, 130.2, 129.2, 128.6, 127.9, 127.8, 116.8, 112.1, 103.9, 60.8, 42.3, 19.1, 13.9; EI-MS (70 eV): m/z (%) = 486 (M⁺, 0.6), 441 (1.9), 349 (0.6), 348 (4.5), 347 (100), 105 (16.8). Anal. calcd for C₂₉H₂₃ClO₅: C 71.53, H 4.76; found: C 71.37, H 4.87.

Ethyl 5-benzoyl-2-methyl-4-(4-nitrobenzoyl)-6-phenyl-4H-pyran-3-carboxylate (3h): White solid; 194 mg, yield 78%; m.p. 168.5-170.2°C; ¹H NMR (600 MHz, CDCl₃) δ = 8.29 (s, 4H), 7.45 (d, J = 7.8 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.20 (t, J = 7.2 Hz, 1H), 7.13 (t, J = 7.8 Hz, 1H), 7.04-7.09 (m, 4H), 5.57 (s, 1H), 4.04 (q, J = 7.2 Hz, 2H), 2.57 (s, 3H), 1.00 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.0, 196.3, 166.0, 162.1, 157.2, 150.0, 141.6, 137.1, 132.5, 132.2, 130.5, 130.2, 129.4, 129.2, 128.0, 127.9, 123.5, 111.9, 104.0, 61.0, 42.7, 19.1, 13.9; EI-MS (70 eV): m/z (%) = 497 (M⁺, 1.6), 349 (1.9), 348 (24.7), 347 (100), 319 (2.7), 105 (46.4), 77 (21.7). Anal. calcd for C₂₉H₂₃NO₇: C 70.01, H 4.66, N 2.82; found: C 69.87, H 4.74, N 3.01.

Ethyl 5-benzoyl-4-(3,4-dimethoxybenzoyl)-2-methyl-6-phenyl-4H-pyran-3-carboxylate (3i): White solid; 202 mg, yield 79%; m.p. 122.3-124.8°C; ¹H NMR (600 MHz, CDCl₃) δ = 7.78 (d, J = 7.8 Hz, 1H), 7.51 (s, 1H), 7.45 (d, J = 7.2 Hz, 2H), 7.25 (d, J = 7.2 Hz, 2H), 7.16 (t, J = 7.2 Hz, 1H), 7.08 (t, J = 7.2 Hz, 1H), 7.05 (d, J = 7.8 Hz, 2H), 7.02 (t, J = 7.8 Hz, 2H), 6.84 (d, J = 8.4 Hz, 1H), 5.66 (s, 1H), 4.05 (q, J = 7.2 Hz, 2H), 3.89 (s, 3H), 3.86 (s, 3H), 2.53 (s, 3H), 1.02 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ = 198.8, 196.6, 166.2, 161.9, 155.2, 153.3, 148.6, 137.3, 132.6, 132.3, 129.9, 129.2, 129.0, 127.9 127.8, 124.6, 112.4, 111.1, 110.0, 109.9, 103.8, 60.6, 56.0, 55.8, 42.2, 19.1, 14.0; EI-MS (70 eV): m/z (%) = 512 (M⁺, 1.6), 349 (1.7), 348 (21.4), 347 (100), 319 (2.9), 105 (36.3). Anal. calcd for C₃₁H₂₈O₇: C 72.64, H 5.51; found: C 72.51, H 5.62.

Ethyl 5-benzoyl-4-(2,4-dichlorobenzoyl)-2-methyl-6-phenyl-4H-pyran-3-carboxylate(3j): White solid; 236 mg, yield 91%; m.p. 113.2-114.9°C; ¹H NMR (400 MHz, CDCl₃) δ = 7.86 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 6.8 Hz, 2H), 7.34 (s, 1H), 7.25 (d, J = 6.8 Hz, 3H), 7.17 (s, 1H), 7.03-7.10 (m, 5H), 5.37 (s, 1H), 4.03 (q, J = 7.2 Hz, 2H), 2.54 (s, 3H), 1.07 (t, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ = 198.7, 195.9, 165.8, 162.5, 158.2, 137.3, 137.0, 136.9, 132.8, 132.3, 132.2, 130.5, 130.4, 130.2, 129.5, 129.3, 127.9, 127.8, 126.7, 110.7, 102.9, 60.8, 46.8, 19.1, 13.9; EI-MS (70 eV): m/z (%) = 520 (M⁺, 2.6), 349 (1.3), 348 (20.5), 347 (100), 319 (2.5), 105 (50.6), 77 (21.7). Anal. calcd for C₂₉H₂₂Cl₂O₅: C 66.80, H 4.25; found: C 66.94, H 4.14.

Ethyl 5-benzoyl-4-(furan-2-carbonyl)-2-methyl-6-phenyl-4H-pyran-3-carboxylate (3k): White solid; 166 mg, yield 75%; m.p. 184.7-185.6°C; ¹H NMR (400 MHz, CDCl₃) δ = 7.56 (s, 1H), 7.50 (d, J = 7.6 Hz, 2H), 7.34 (d, J = 3.6 Hz, 1H), 7.21 (d, J = 7.6 Hz, 2H), 7.16 (t, J = 7.6 Hz, 1H), 7.04-7.10 (m, 5H), 6.50 (s, 1H), 5.40 (s, 1H), 4.09 (q, J = 6.8 Hz, 2H), 2.54 (s, 3H), 1.07 (t, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ = 195.9, 187.8, 165.6, 161.7, 154.9, 151.5, 146.6, 136.8, 132.1, 132.0, 129.7, 128.8, 128.7, 127.5, 127.4, 119.1, 112.0, 111.4, 102.8, 60.3, 43.0, 18.6, 13.4; EI-MS (70 eV): m/z (%) = 442 (M⁺, 1.5), 349 (2.2), 348 (22.5), 347 (100), 319 (3.8), 105 (47.3), 77 (23.1). Anal. calcd for C₂₇H₂₂O₆: C 73.29, H 5.01; found: C 73.13, H 5.15.

Ethyl 5-benzoyl-2-methyl-6-phenyl-4-(thiophene-2-carbonyl)-4H-pyran-3-carboxylate (3l): White solid; 163 mg, yield 71%; m.p. 133.5-134.8°C; ¹H NMR (400 MHz, CDCl₃) δ = 7.90 (d, J = 3.6 Hz, 1H), 7.58 (d, J = 4.8 Hz, 1H), 7.48 (d, J = 7.6 Hz, 2H), 7.27 (d, J = 6.8 Hz, 2H), 7.10 (t, J = 6.8 Hz, 1H), 7.02-7.08 (m, 6H), 5.49 (s, 1H), 4.09 (q, J = 7.2 Hz, 2H), 2.54 (s, 3H), 1.05 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 196.4, 192.5, 185.4, 166.0, 162.1, 155.2, 137.3, 134.6, 134.2, 132.5, 132.3, 130.0, 129.2, 129.0, 128.1, 127.9, 127.8, 112.0, 103.4, 60.7, 44.6, 19.0, 13.8; EI-MS (70 eV): m/z (%) = 458.5 (M⁺, 2.4), 349 (3.1), 348 (22.4), 347 (100), 319

(5.5), 111 (5.4), 106 (4.0), 105 (55.0). Anal. calcd for $C_{27}H_{22}O_5S$: C 70.72, H 4.84; found: C 70.53, H 4.91.

Diethyl 4-benzoyl-2-methyl-6-phenyl-4H-pyran-3,5-dicarboxylate (3m): White solid; 178 mg, yield 85%; m.p. 127.9-128.5°C; ¹H NMR (400 MHz, CDCl₃) δ = 8.16 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.37-7.42 (m, 5H), 5.58 (s, 1H), 4.02 (q, J = 7.2 Hz, 2H), 3.81 (q, J = 7.2 Hz, 2H), 2.44 (s, 3H), 1.00 (t, J = 7.2 Hz, 3H), 0.77 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.8, 166.4, 166.0, 161.6, 158.9, 136.6, 133.7, 133.0, 129.8, 129.4, 128.7, 128.2, 127.8, 105.5, 104.2, 60.6, 40.7, 18.9, 13.8, 13.3; EI-MS (70 eV): m/z (%) = 420 (M⁺, 1.8), 375 (2.5), 316 (20.0), 315 (100), 259 (13.6), 105 (12.1). Anal. calcd for C₂₅H₂₄O₆: C 71.41, H 5.75; found: C 71.60, H 5.59.

Diethyl 4-(furan-2-carbonyl)-2-methyl-6-phenyl-4H-pyran-3,5-dicarboxylate(3n): White solid; 139 mg, yield 68%; m.p. 100.3-101.8°C; ¹H NMR (400 MHz, CDCl₃) δ = 7.66 (s, 1H), 7.37–7. 46 (m, 6H), 6.58 (s, 1H), 5.31 (s, 1H), 4.09 (q, J = 4.8 Hz, 2H), 3.87 (q, J = 7.2 Hz, 2H), 2.44 (s, 3H), 1.09 (t, J = 7.2 Hz, 3H), 0.81 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ = 188.8, 166.3, 166.0, 161.7, 159.0, 152.0, 146.8, 133.7, 129.9, 128.7, 127.8, 119.3, 112.4, 105.0, 103.8, 60.7, 41.6, 18.9, 13.9, 13.4; EI-MS (70 eV): m/z (%) = 410 (M⁺, 3.6), 316 (18.4), 315 (100), 259 (12.5), 105 (8.2). Anal. calcd for C₂₃H₂₂O₇: C 67.31, H 5.40; found: C 67.15, H 5.48.

3-Ethyl 5-methyl 4-benzoyl-6-methyl-2-phenyl-4H-pyran-3,5-dicarboxylate (30): White solid; 174 mg, yield 86%; m.p. 105.4-107.0°C; ¹H NMR (600 MHz, CDCl₃) δ = 8.16 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.43 (t, J = 7.8 Hz, 3H), 7.38 (t, J = 7.2 Hz, 2H), 5.59 (s, 1H), 3.83 (q, J = 7.2 Hz, 2H), 3.54 (s, 3H), 2.44 (s, 3H), 0.77 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.7, 166.5, 166.3, 161.8, 159.0, 136.5, 133.6, 133.0, 129.9, 129.3, 128.8, 128.2, 127.8, 105.5, 104.1, 60.7, 51.4, 40.8, 18.9, 13.4; EI-MS (70 eV): m/z (%) = 406 (M⁺, 1.3), 302 (18.2), 301 (100), 273 (17.9), 105 (15.2). Anal. calcd for C₂₄H₂₂O₆: C 70.92, H 5.46; found: C 70.77, H 5.32.

Methyl 4,5-dibenzoyl-2-methyl-6-phenyl-4H-pyran-3-carboxylate (3p): White solid; 204 mg, yield 93%; m.p. 151.8-153.1°C; ¹H NMR (600 MHz, CDCl₃) δ = 8.04 (d, J = 7.2 Hz, 2H), 7.48 (t, J = 7.2 Hz, 1H), 7.45 (d, J = 7.8 Hz, 2H), 7.40 (t, J = 7.2 Hz, 2H), 7.27 (d, J = 7.2 Hz, 2H), 7.16 (t, J = 7.2 Hz, 1H), 7.11 (t, J = 7.2 Hz, 1H), 7.06 (t, J = 7.2 Hz, 2H), 7.03 (t, J = 7.8 Hz, 2H), 5.68 (s, 1H), 3.53 (s, 3H), 2.54 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.4, 196.3, 166.5, 162.1, 155.7, 137.2, 136.4, 133.0, 132.5, 132.3, 130.1, 129.3, 129.2, 129.1, 128.3, 127.9, 127.8, 112.3, 103.7, 51.4, 42.6, 19.0; EI-MS (70 eV): m/z (%) = 438 (M⁺, 0.8), 334 (22.5), 333 (100), 105 (64.1), 77 (35.7). Anal. calcd for C₂₈H₂₂O₅: C 76.70, H 5.06; found: C 76.83, H 5.20.

Benzyl 4,5-dibenzoyl-2-methyl-6-phenyl-4H-pyran-3-carboxylate (3q): White solid; 247 mg, yield 96%; m.p. 127.8-129.1°C; ¹H NMR (400 MHz, DMSO-d6) δ = 7.94 (d, J = 7.6 Hz, 2H), 7.44 (d, J = 7.6 Hz, 3H), 7.24-7.27 (m, 7H), 7.16 (t, J = 7.6 Hz, 1H), 7.10 (t, J = 7.6 Hz, 3H), 7.06 (d, J = 7.6 Hz, 2H), 7.03 (d, J = 7.6 Hz, 2H), 5.67 (s, 1H), 5.08 (d, J = 12.4 Hz, 1H), 4.88 (d, J = 12.4 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.3, 196.2, 165.8, 162.5, 155.4, 137.2, 136.1, 135.3, 132.9, 132.5, 132.2, 130.0, 129.3, 129.2, 129.1, 128.5, 128.4, 128.2, 128.1, 127.8, 127.7, 112.3, 103.5, 66.5, 42.5, 19.1; EI-MS (70 eV): m/z (%) = 514 (M⁺, 0.6), 410 (26.0), 409 (100), 105 (53.8), 91 (31.5), 77 (23.2). Anal. calcd for C₃₄H₂₆O₅: C 79.36, H 5.09; found: C 79.14, H 5.03.

4,5-Dibenzoyl-cyclopent-2-enecarboxylic acid methyl ester (3r): Light yellow crystal; 127 mg, yield 76%; m.p. 140-141 °C;¹H NMR (400 MHz, CDCl₃) δ = 8.03 (d, J = 7.2 Hz, 2H), 7.94 (d, J = 7.2 Hz, 2H), 7.50-7.55 (m, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 7.2 Hz, 2H), 5.12-5.18 (m, 3H), 3.70-3.76 (m, 4H), 3.36 (2d, J = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 213.9, 197.6, 197.0, 166.1, 136.3, 135.8, 133.1, 133.0, 128.6, 128.5, 128.4, 128.0, 99.4, 81.7, 52.7, 41.2, 40.5; MS (ESI): m/z (%) = 357.2 (M+Na), 334 (M⁺). Anal. calcd for C₂₁H₁₈O₄: C 75.43, H 5.43; found: C 75.20, H 5.38.

4. Copies of ¹H NMR and ¹³C NMR Spectra

Figure 1. The ¹H NMR (400M Hz, $CDCl_3$) of **3a**.

$\begin{array}{c} 066 \\ 048 \\ 045 \\ 045 \end{array}$	473 454 452 4452 4416 278 3396 61 003 0051 0051 0051 0051 0051 0051 0051	034 016 985 985	547	967 949 932
8.8. 8.8.		4.4.	-2.	0.0

Figure 3. The ¹H NMR (400M Hz, CDCl₃) of **3b**.

$$\begin{array}{c} 7, 963\\ 7, 1963\\ 7, 177\\ 7, 1948\\ 7, 7, 1948\\ 7, 7, 1948\\ 7, 7, 1948\\ 7, 1019\\ 7, 009\\ 7, 1010\\ 7, 010\\ 7, 010\\ 7, 010\\ 7, 010\\ 7, 010\\ 1, 177\\ 009\\ 7, 010\\ 1, 177\\ 0, 019\\ 1, 177\\ 1, 011\\ 1, 177\\ 1, 012\\ 1, 012\\ 1, 009\\ 1, 177\\ 1, 012\\ 1,$$

Figure 5. The ¹H NMR (400M Hz, CDCl₃) of **3c**.

Figure 6. The ¹³C NMR (100MHz, CDCl₃) of **3c**.

$$\begin{array}{c} & \mathbb{C}_{8} \ 154 \\ \mathbb{C}_{8} \ 154 \\ \mathbb{C}_{8} \ 154 \\ \mathbb{C}_{8} \ 154 \\ \mathbb{C}_{17} \ 636 \\ \mathbb{C}_{17} \ 636 \\ \mathbb{C}_{17} \ 636 \\ \mathbb{C}_{17} \ 236 \\ \mathbb{C}_{17} \ 238 \\ \mathbb{C}_{17} \ 238 \\ \mathbb{C}_{17} \ 238 \\ \mathbb{C}_{17} \ 030 \\ \mathbb{C}_{17} \ 030 \\ \mathbb{C}_{17} \ 030 \\ \mathbb{C}_{17} \ 030 \\ \mathbb{C}_{10} \ 936 \\ \mathbb{C}_{10} \ \mathbb$$

Figure 9. The ¹H NMR (400M Hz, CDCl₃) of **3e**.

$$\begin{array}{c} & 8.124 \\ & 8.8.100 \\ & 8.8.089 \\ & 8.8.089 \\ & 8.8.089 \\ & 8.100 \\ & 8.124 \\ & 157.077 \\ & 7.7.157 \\ & 7.7.157 \\ & 7.7.0115 \\ & 7.7.0115 \\ & 7.7.0115 \\ & 7.7.0125 \\$$

1	5	9 0 4 0 0	∞− <i>∩1</i> 0,00,00,00,00,00,00,00,00,00,00,00,00,0			
- · · ·				2	4	$\circ \infty$
96 96	82	666 666 67	0111405601333	0.	ci	
	_		$\neg \neg $	9	4	-
57		\leq			1	1 1

Figure 15. The ¹H NMR (600M Hz, CDCl₃) of **3h**.

fl (ppm)

Figure 19. The ¹H NMR (400M Hz, CDCl₃) of 3j.

Figure 21. The ¹H NMR (400M Hz, CDCl₃) of 3k.

Figure 23. The ¹H NMR (400M Hz, CDCl₃) of 3l.

Figure 25. The ¹H NMR (400M Hz, CDCl₃) of **3m**.

Figure 27. The ¹H NMR (400M Hz, CDCl₃) of **3n**.

$\begin{array}{c} 659 \\ 456 \\ 447 \\ 424 \\ 407 \\ 389 \\ 374 \end{array}$	586 582 577	309	$\begin{array}{c} 103\\ 097\\ 085\\ 085\\ 085\\ 085\\ 896\\ 886\\ 886\\ 886\\ 886\\ 886\\ 886\\ 886$	438	110 092 075 831 813 795
	$\bigwedge_{6.}^{6.}$	-5.	4444	_2.	1. 1. 0.

Figure 29. The ¹H NMR (600M Hz, CDCl₃) of 30.

Figure 31. The ¹H NMR (600M Hz, CDCl₃) of **3p**.

Figure 33. The ¹H NMR (400M Hz, DMSO-d6) of 3q.

Figure 35. The ¹H NMR (400M Hz, CDCl3) of 3r.

5. X-ray crystal structure of 3q

Figure 37. X-ray crystal structure of compound 3q.

Single crystal of compound **3q** was obtained from the mixed solvents of dicholomethane and n-hexane. CCDC: 1483768 contains the supplementary crystallographic data which can be obtained free of charge from The Cambrige Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>. **Crystal data.** C₃₄ H₂₆ O₅, M = 514.55, triclinic, a = 10.122(1) Å, b = 11.360(2) Å, c = 12.485(2) Å, V = 1316.4(3) Å³.