Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Phase-transfer catalyzed enantioselective α-alkylation of α-acyloxymalonates : construction of chiral α-hydroxy quaternary stereogenic centers

Min Woo Ha,^a Sujee Choi,^a Seek Kim,^a Jun Young Lee,^a Jae Kyun Lee,^b Jeeyeon Lee,^a Suckchang Hong,^{a,*} and Hyeung-geun Park^{a,*}

^aResearch Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 151-742, Korea, ^bNeuro-Medicine Center, Korea Institute of Science and Technology, PO Box 131, Cheongyang, Seoul 130-65

hgpk@snu.ac.kr

List of Contents

(1) General Methods	S 2
(2) Experimental Sections	S 3
(A) Procedure for preparation of PTC substrates	S 3
(B) Procedure of enantioselective PTC alkylation	S 5
(C) Derivatization	S 19
(3) ¹ H & ¹³ C NMR Spectra	S23
(4) Chiral HPLC Chromatogram	S 73
(5) References	S89

(1) General Methods

Solvents and Reagents

All reagents bought from commercial sources were used without further purification. Organic solvents were concentrated under reduced pressure using a Büchi rotary evaporator. As the commercially available KOH was a pellet type, solid KOH should be grinded to the powder form for successful reaction and high enantiopurity. 50% w/v aqueous KOH was used as stock solution. Phase-transfer catalysts (**8**, **9**, and **11**) were purchased from the commercial source (Wako and Sigma Aldrich). Phase-transfer catalyst (**10**) was prepared according to the reported procedure.^{S1}

Chromatography and HPLC

TLC analyses were performed using Merck precoated TLC plate (silica gel 60 GF₂₅₄, 0.25 mm). Flash column chromatography was carried out using E. Merck Kieselgel 60 (230~400 mesh). Instrument (Hitachi, L-2130) and software (Hitachi, Version LaChrom 8908800-07) were used as HPLC analysis. The values of enantiomeric excess (ee) of chiral products were determined by HPLC using 4.6 mm \times 250 mm Daicel Chiralpak AD-H.

Spectral data

Infrared (IR) spectra were recorded on a JASCO FT/IR-4200 spectrometer. Nuclear magnetic resonance (¹H-NMR and ¹³C-NMR) spectra were measured on JEOL JNM-LA 300 [300 MHz (¹H), 75 MHz (¹³C)] spectrometer, JEOL JNM-GSX 400 [400 MHz (¹H), 100 MHz (¹³C)] spectrometer,

and Bruker AMX 500 [500 MHz (¹H), 125 MHz (¹³C)] spectrometer, using CHCl₃-*d* as solvents, and were reported in ppm relative to CHCl₃ (δ 7.24) for ¹H-NMR and relative to the central CDCl₃ (δ 77.23) resonance for ¹³C-NMR. Coupling constants (*J*) in ¹H-NMR are in Hz. Low-resolution mass spectra (LRMS) and high-resolution mass spectra (HRMS) were measured on a JEOL JMS 700, JEOL JMS 600-W spectrometer, or Agilent 6530 Q-TOF (ESI) spectrometer. Melting points were measured on a Büchi B-540 melting point apparatus and were not corrected. Optical rotations were measured on a JASCO polarimeter P-2000 series.

(2) Experimental sections

(A) Procedure for preparation of PTC substrates

Compound 1 and 2 were prepared according to the already reported procedure.^{S2} A solution of benzyl *tert*-butyl malonate (1, 1 g, 4.0 mmol) in dry

MeCN (40 mL) was added to *N*-bromosuccinimide (853 mg, 4.8 mmol) and magnesium perchlorate (268 mg, 1.2 mmol) at 0 °C under argon atmosphere. The reaction mixture was stirred for 4 hours. After the solvent was removed on a rotary evaporator, the mixture was diluted with EtOAc (200 mL) and washed with brine (150 mL). The organic layers were dried over with anhydrous MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by column chromatography (silica gel, hexane : EtOAc = 40 : 1 ~ 20 : 1) to afford 1-benzyl 3-(*tert*-butyl) 2-bromomalonate (**3**, 820mg, 2.49 mmole) in dry dimethylformamide (25 ml) at room temperature under argon atmosphere. The reaction was stirred until the TLC analysis showed that the reaction was complete. the reaction solvent was evaporated and diluted with EtOAc (200 ml), extracted with brine (100 ml x 2 times), dried over anhydrous MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by column chromatography (silica gel, hexane s: EtOAc = 15:1) to afford 1-benzyl 3-(*tert*-butyl) 2-bromomalonate (**5**, 698 mg, 91% yield) as a colorless oil. 1-Benzhydryl 3-(*tert*-butyl) 2-bromomalonate (**4**), 1-benzhydryl 3-(*tert*-butyl) 2-(benzoyloxy)malonate (**7**) were synthesized in the same manner described above. Analytic features of the compound **4** was consistent with the known information of the substance.^{S3}

Allyl bromide (42.1 μ L, 0.49 mmol) was added to a solution of -benzyl 3-(*tert*-butyl) 2-acetoxymalonate (**5**, 30 mg, 0.10 mmol) and (*S*,*S*)-3,4,5-trifluorophenyl-NAS bromide (**8**, 4.5 mg, 0.005 mmol) in toluene (324 μ L) at room temperature. At the designated low temperature, aqueous 50% w/v aqueous KOH (42.1 μ L, 0.49 mmol) was added to the reaction mixture and stirred until the starting material disappeared. After completion of the reaction, the reaction mixture was diluted with ethyl acetate (20ml), washed with brine (10mL x 2), dried over anhydrous MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by flash column chromatography on silica gel eluting with hexane-EtOAc solution (10:1) to afford **5a** (33.4 mg, 98% yield) as a colorless oil.

1-Benzyl 3-(tert-butyl) 2-bromomalonate (3)

0 0	Following the procedure (A) from the compound 1, the title molecule 3 was obtained as a colorless oil (75% yield). ¹ H-NMR
Ph O Ot-Bu Br	(300 MHz, CDCl ₃) δ 7.37 ~ 7.35 (m, 5H), 5.22 (s, 2H), 4.77 (s, 1H), 1.39 (s, 9H) ppm; ¹³ C-NMR (125 MHz, CDCl ₃) δ 164.7,
3	163.1, 134.7, 128.64, 128.60, 128.5, 84.4, 68.4, 43.9, 27.6 ppm; IR (KBr) 2981, 2935, 1741, 1456, 1371, 1300, 1257, 1139,

1001, 969, 847, 768, 751, 698 cm⁻¹; HRMS (FAB) calcd for C₁₄H₁₈BrO₄ ([M+H]⁺): 329.0388, found: 329.0383.

1-Benzyl 3-(tert-butyl) 2-acetoxymalonate (5)

Following the procedure (A) from the compound 3, the title molecule 4 was obtained as a colorless oil (90% yield). ¹H-NMR (300 MHz, CDCl₃) δ 7.36 ~ 7.31 (m, 5H), 5.44 (s, 1H), 5.26 (d, *J* = 12.09 Hz, 1H), 5.18 (d, *J* = 12.09 Hz, 1H), 2.19 (s, 3H), 1.37 (s, 9H) ppm; ¹³C-NMR (100 MHz, CDCl₃) δ 169.4, 164.6, 163.0, 134.8, 128.58, 128.56, 128.4, 83.9, 72.3, 67.7, 27.7, 20.4 ppm; IR (KBr) 2980, 2939, 1748, 1457, 1371, 1220, 1151, 1100, 1001, 841, 754 cm⁻¹; HRMS (FAB) calcd for [C₁₆H₂₁O₆]⁺ ([M+H]⁺): 309.1338,

found: 309.1332.

1-Benzhydryl 3-(tert-butyl) 2-acetoxymalonate (6)

Following the procedure (A) from the compound 5, the title molecule 6 was obtained as a sticky oil (91% yield). ¹H-NMR (300 MHz, CDCl₃) 7.38 ~ 7.25 (m, 10H), 6.95 (s, 1H), 5.50 (s, 1H), 2.19 (s, 3H), 1.36 (s, 9H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 169.5, 163.8, 163.0, 139.1, 128.55, 128.50, 128.23, 128.21, 127.3, 127.1, 84.0, 78.7, 72.5, 27.7, 20.4 ppm; IR (KBr) 3489, 2980, 1751, 1587, 1496. 1371, 1220, 1150, 1098. 962, 839, 744, 700 cm⁻¹; HRMS (FAB) calcd for [C₂₂H₂₄O₆]⁺ ([M+Na]⁺): 407.1471, found: 407.1477.

1-Benzhydryl 3-(tert-butyl) 2-(benzoyloxy)malonate (7)

1-Benzyl 3-(tert-butyl) 2-acetoxy-2-allylmalonate (5a)

Following the procedure (**B**) from the substrate 5, the title molecule 5a was obtained as a colorless oil. ¹H-NMR (300 MHz, CDCl₃) δ 7.35 ~ 7.29 (m, 5H), 5.76 ~ 5.62 (m, 1H), 5.21 (d, J = 12.08 Hz, 1H), 5.15 (d, J = 12.08 Hz, 1H), 5.11 ~ 5.05 (m, 2H), 2.99 ~ 2.86 (m, 2H), 2.12 (s, 3H), 1.35 (s, 9H) ppm; ¹³C-NMR (100 MHz, CDCl₃) δ 169.3, 166.5, 164.6, 135.1, 130.4, 128.54, 128.48, 128.4, 119.9, 83.4, 82.7, 67.6, 38.5, 27.6, 20.7 ppm; IR (KBr) 2980, 1752, 1457, 1370, 1260, 1229, 1142, 1063, 844, 772 cm⁻¹; HRMS (FAB) calcd for [C₁₉H₂₅O₆]⁺ ([M+H]⁺): 349.1651, found: 349.1649; The enantioselectivity was determined by chiral HPLC analysis (DAICEL Chiralpak AD-H, hexane : 2-propanol = 99 : 1, flow rate = 1.0 ml/min, 23 °C, λ = 254 nm) retention time; major isomer 11.92 min, minor isomer 13.07 min, 42% ee, $[\alpha]^{20}_{D} = +4.66$ (*c* 1.0, CHCl₃).

1-Benzhydryl 3-(tert-butyl) 2-acetoxy-2-allylmalonate (6a)

Following the procedure (**B**) from the substrate **6**, the title molecule **6a** was obtained as a colorless oil. ¹H-NMR (300 MHz, $CDCl_3$) δ 7.32 ~ 7.27 (m, 10H), 6.92 (s, 1H), 5.67 ~ 5.56 (m, 1H), 5.04 (s, 1H), 5.00 (d, J = 8.79 Hz, 1H), 2.99 ~ 2.96 (m, 2H), 2.09 (s, 3H), 1.32 (s, 9H) ppm; ¹³C-NMR (100 MHz, CDCl₃) δ 169.3, 165.6, 164.5, 139.3, 139.2, 130.2, 128.44, 128.36, 128.1, 128.0, 127.4, 127.3, 120.0, 83.5, 82.7, 78.5, 38.3, 27.6, 20.7 ppm; IR (KBr) 3033, 2980, 2933, 1751, 1643, 1455, 1370, 1257,

1229, 1142, 1062, 926, 843, 744, 700 cm⁻¹; HRMS (FAB) calcd for $[C_{25}H_{29}NO_6]^+$ ($[M+H]^+$): 425.1964, found: 425.1967; The enantioselectivity was

determined by chiral HPLC analysis (DAICEL Chiralpak AD-H, hexane : 2-propanol = 95 : 5, flow rate = 1.0 ml/min, 23 °C, λ = 254 nm) retention time ; major isomer 12.94 min, minor isomer14.90 min, 76% ee, [α]²⁰_D = + 37.15 (*c* 1.0, CHCl₃).

1-Benzhydryl 3-(tert-butyl) (R)-2-(benzoyloxy)-2-hexylmalonate (7a)

Following the procedure (**B**) from the substrate **7** using *n*-iodohexane, the title molecule **7a** was obtained as a colorless oil. ¹H-NMR (300 MHz, CDCl₃) δ 8.08 (d, *J* = 7.68 Hz, 2H), 7.58 (t, *J* = 7.43 Hz, 1H), 7.45 (d, *J* = 7.70 Hz, 2H), 7.32 ~ 7.24 (m, 10H), 6.99 (s, 1H), 2.42 ~ 2.27 (m, 2H), 1.35 (s, 9H), 1.26 ~ 1.18 (m, 8H), 0.82 (t, *J* = 6.68 Hz, 3H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 166.1, 165.2, 164.8, 139.5, 139.3, 133.3, 130.0, 129.5, 128.42, 128.39, 128.3, 128.1, 127.9, 127.5, 127.2, 83.9, 83.3,

78.3, 34.0, 31.4, 29.7, 29.0, 27.7, 23.2, 22.4, 14.0 ppm; IR (KBr) 2962, 2930, 1752, 1730, 1453, 1370, 1285, 1220, 1143, 772, 700 cm⁻¹; HRMS (CI): calcd for $[C_{33}H_{37}O_6]^+$ ([M-H]⁺): 529.2590, found: 529.2596; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 95 : 5, flow rate = 1.0 mL/min, 23 °C, λ = 254 nm) retention time: major isomer 10.95 min, minor isomer 12.33 min, 75% ee, $[\alpha]^{20}D = +2.64$ (*c* 1.0, CHCl₃).

1-Benzhydryl 3-(tert-butyl) (R)-2-allyl-2-(benzoyloxy)malonate (7b)

Following the procedure (**B**) from the substrate **7**, the title molecule **7b** was obtained as a white oil. ¹H-NMR (300 MHz, CDCl₃) δ 8.09 ~ 8.06 (m, 2H), 7.60 ~ 7.55 (m, 1H), 7.46 ~ 7.41 (m, 2H), 7.35 ~ 7.23 (m, 10H), 6.99 (s, 1H), 5.77 ~ 5.64 (m, 1H), 5.08 ~ 5.07 (m, 1H), 5.03 (s, 1H), 3.22 ~ 3.09 (m, 2H), 1.35 (s, 9H) ppm; ¹³C-NMR (100 MHz, CDCl₃) δ 165.6, 164.7, 164.5, 139.4, 139.2, 133.4, 130.2, 130.0, 129.4, 128.42, 128.38, 128.3, 128.1, 127.9, 127.5, 127.2, 120.1, 83.6, 83.1, 78.5, 38.3, 27.7 ppm;

IR (KBr) 3065, 2980, 1752, 1731, 1644, 1602, 1496, 1395, 1244, 1109, 991, 842, 742 cm⁻¹; HRMS (FAB): calcd for $[C_{30}H_{31}O_6]^+$ ([M+H]⁺): 487.2121, found: 487.2126; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 85 : 15, flow rate = 1.0 mL/min, 23 °C, λ = 254 nm) retention time: major isomer 9.05 min, minor isomer 11.06 min, 87% ee, $[\alpha]^{20}D = +1.27$ (*c* 1.0, CHCl₃).

1-Benzhydryl 3-(*tert*-butyl) (R)-2-(benzoyloxy)-2-(2-methylallyl)malonate (7c)

Following the procedure (**B**) from the substrate **7** using 3-bromo-2-methylpropene, the title molecule **7c** was obtained as a white oil. ¹H-NMR (300 MHz, CDCl₃) δ 8.10 ~ 8.07 (m, 2H), 7.61 ~ 7.56 (m, 1H), 7.47 ~ 7.42 (m, 2H), 7.36 ~ 7.22 (m, 10H), 6.99 (s, 1H), 4.76 ~ 4.70 (d, *J* = 15.93 Hz, 2H), 3.19 (s, 2H), 1.68 (s, 3H), 1.33 (s, 9H) ppm; ¹³C-NMR (100 MHz, CDCl₃) δ 165.8, 164.71, 164.67, 139.3, 139.2, 139.1, 133.4, 130.0, 129.4, 128.4, 128.3, 128.1, 127.9, 127.5, 127.3, 116.2, 83.54, 83.48,

78.5, 41.0, 27.62, 23.2 ppm; IR (KBr) 3065, 2978, 2854, 2371, 1967, 1868, 1689, 1647, 1601, 1542, 1473, 1395, 954, 759, 648 cm⁻¹; HRMS (FAB):

calcd for $[C_{31}H_{33}O_6]^+$ ($[M+H]^+$): 501.2277, found: 501.2274; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 85 : 15, flow rate = 1.0 mL/min, 23 °C, λ = 254 nm) retention time: major isomer 7.53 min, minor isomer 10.62 min, 91% ee, $[\alpha]^{20}_D = + 3.98$ (*c* 1.0, CHCl₃).

1-Benzhydryl 3-(tert-butyl) (R)-2-(benzoyloxy)-2-(2-bromoallyl)malonate (7d)

Following the procedure (**B**) from the substrate **7** using 2,3-bromopropene, the title molecule **7d** was obtained as a white oil. ¹H-NMR (300 MHz, CDCl₃) δ 8.13 ~ 8.10 (m, 2H), 7.62 ~ 7.57 (m, 1H), 7.48 ~ 7.43 (m, 2H), 7.38 ~ 7.24 (m, 10H), 7.01 (s, 1H), 5.54 (s, 1H), 5.43 ~ 5.42 (m, 1H), 3.75 ~ 3.64 (dd, $J_I = 18.21$ Hz, $J_2 = 15.84$ Hz, 2H), 1.33 (s, 9H) ppm; ¹³C-NMR (100 MHz, CDCl₃) δ 165.0, 164.7, 163.9, 139.1, 139.0, 133.5, 130.1, 129.2, 128.5, 128.4, 128.3, 128.2, 128.0, 127.5, 127.3, 125.0,

122.1, 84.1, 82.5, 78.8, 43.6, 27.6 ppm; IR (KBr) 2979, 1753, 1729, 1627, 1602, 1496, 1395, 1370, 1289, 1144, 1069, 956, 839, 742, 700 cm⁻¹; HRMS (FAB): calcd for $[C_{30}H_{30}O_6Br]^+$ ($[M+H]^+$): 565.1226, found: 565.1223; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 85 : 15, flow rate = 1.0 mL/min, 23 °C, λ = 254 nm) retention time: major isomer 8.97, minor isomer 14.59, 93% ee, $[\alpha]^{20}D = -3.89$ (*c* 1.0, CHCl₃).

1-Benzhydryl 3-(*tert*-butyl) (R)-2-(benzoyloxy)-2-benzylmalonate (7e)

Following the procedure (**B**) from the substrate 7 using benzyl bromide, the title molecule 7e was obtained as a white oil. ¹H-NMR (300 MHz, CDCl₃) δ 8.01 ~ 7.98 (d, J = 7.68 Hz, 2H), 7.59 ~ 7.55 (m, 1H), 7.44 ~ 7.39 (m, 2H), 7.34 ~ 7.19 (m, 10H), 7.17 ~ 7.10 (m, 3H). 7.04 ~ 7.02 (m, 2H), 6.99 (s, 1H), 3.72 (s, 2H), 1.30 (s, 9H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 165.6, 165.0, 164.4, 139.3, 139.1, 134.0, 133.4, 130.2, 130.0, 129.4, 128.5, 128.4, 128.3, 128.1, 127.9, 127.7, 127.1, 83.8, 83.6, 78.5, 39.3, 27.6 ppm; IR (KBr) 3064, 3032, 1752, 1727, 1601, 1495, 1453, 1370, 1284, 1108, 1033, 954, 742 cm⁻¹; HRMS (FAB): calcd for [C₃₄H₃₂O₆Na]⁺

([M+Na]⁺): 559.2097, found: 559.2098; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2propanol = 85 : 15, flow rate = 1.0 mL/min, 23 °C, λ = 254 nm) retention time: major isomer 8.78 min, minor isomer 11.32 min, 91% ee, $[\alpha]^{20}D = +$ 7.24 (c 1.0, CHCl₃).

1-Benzhydryl 3-(tert-butyl) (R)-2-(benzoyloxy)-2-(4-methylbenzyl)malonate (7f)

Following the procedure (B) from the substrate 7, using 4-methylbenzyl bromide, the title molecule 7f was obtained as a colorless oil. ¹H-NMR (300 MHz, CDCl3) δ 8.02 ~ 8.00 (d, J = 7.32 Hz, 2H), 7.60 ~7.55 (m, 1H), 7.45 ~ 7.40 (m, 2H), 7.33 ~ 7.23 (m, 10H), 6.98 (s, 1H), 6.91 ~ 6.88 (m, 4H), 3.67 (s, 2H), 2.25 (s, 3H), 1.31 (s, 9H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 165.6, 165.0, 164.5, 139.3, 139.2, 136.7, 133.4, 130.9, 130.1, 130.0, 129.5, 128.9, 128.5, 128.4, 128.2, 128.1, 127.8, 127.7,

127.2, 83.9, 83.5, 78.5, 38.9, 27.6, 21.0 ppm; IR (KBr) 3064, 2979, 2310, 1751, 1730, 1602, 1516, 1453, 1370, 1282, 1154, 1110, 955, 842, 712, 700 cm-1; HRMS (FAB): calcd for $[C_{35}H_{35}O_6]^+$ ($[M+H]^+$): 551.2434, found: 551.2445; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 85 : 15, flow rate = 1.0 mL/min, 23 °C, $\lambda = 254$ nm) retention time: major isomer 9.03 min, minor isomer 12.37 min, 91% ee, $[\alpha]^{20}_{D} = +4.13$ (*c* 1.0, CHCl₃).

1-Benzhydryl 3-(tert-butyl) (R)-2-(benzoyloxy)-2-(4-(tert-butyl)benzyl)malonate (7g)

Following the procedure (B) from the substrate 7 using 4-(*tert*-butyl)benzyl bromide, the title molecule 7g was obtained as a white oil. ¹H-NMR (300 MHz, CDCl₃) δ 8.01 ~ 7.98 (d, J = 7.32 Hz, 2H), 7.60 ~ 7.55 (t, J = 7.32 Hz, 1H), 7.45 ~ 7.40 (t, J = 7.40 Hz, 1H), 7.45 ~ 7.40 (t, J = 7.40 Hz, 1H) 7.68 Hz, 2H), 7.35 ~ 7.25 (m, 10H), 7.13 ~ 7.08 (d, J = 8.25 Hz, 2H), 7.00 ~ 6.97 (m, 3H), 3.68 (s, 2H), 1.29 (s, 9H), 1.24 (s, 2H), 7.08 Hz, 2H), 7.08 Hz, 2H), 7.09 ~ 6.97 (m, 3H), 3.68 (s, 2H), 1.29 (s, 9H), 1.24 (s, 2H), 7.08 Hz, 2H), 7.09 ~ 6.97 (m, 3H), 3.68 (s, 2H), 1.29 (s, 9H), 1.24 (s, 2H), 7.08 Hz, 2H), 7.09 ~ 6.97 (m, 3H), 3.68 (s, 2H), 1.29 (s, 9H), 1.24 (s, 2H), 7.08 Hz, 2H), 7.08 Hz, 2H), 7.09 ~ 6.97 (m, 3H), 3.68 (s, 2H), 1.29 (s, 9H), 1.24 (s, 2H), 7.08 Hz, 2H), 7.08 Hz, 2H), 7.09 ~ 6.97 (m, 3H), 3.68 (s, 2H), 1.29 (s, 9H), 1.24 (s, 2H), 7.08 Hz, 2H), 7.08 Hz, 2H), 7.08 Hz, 2H), 7.09 ~ 6.97 (m, 3H), 7.08 (s, 2H), 7.09 (s, 9H), 1.24 (s, 2H), 7.09 ~ 6.97 (m, 3H), 7.08 Hz, 2H), 7.09 (s, 2H), 7. 9H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 165.8, 165.0, 164.5, 149.9, 139.3, 139.2, 133.3, 131.0, 130.0, 129.9, 129.5, 128.4, 128.4, 128.3, 128.1, 127.9, 127.7, 127.2, 125.1, 83.9, 83.5, 78.5, 38.9, 34.3, 31.3, 27.6 ppm; IR (KBr) 3032, 2962, 1752, 1729, 1602, 1516, 1496, 1394, 1284, 1176, 1108, 1048, 956, 743, 700 cm⁻¹; HRMS (FAB): calcd for [C₃₈H₄₁O₆]⁺ ([M+H]⁺): 593.2903, found: 593.2922; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 85 : 15, flow rate = 1.0 mL/min, 23 °C, $\lambda = 254$ nm) retention time: major isomer 6.16 min, minor isomer 8.59 min, 91% ee, $[\alpha]^{20}_{D} = +7.49$ (c 1.0, CHCl₃).

1-Benzhydryl 3-(tert-butyl) (R)-2-(benzoyloxy)-2-(3-methoxybenzyl)malonate (7h)

Following the procedure (**B**) from the substrate **7** using 3-methoxybenzyl bromide, the title molecule **7h** was obtained as a white oil.); ¹H-NMR (300 MHz, CDCl₃) δ 8.02 ~ 8.00 (d, *J* = 7.68 Hz, 2H), 7.60 ~ 7.55 (t, *J* = 7.32 Hz, 1H), 7.45 ~ 7.40 (t, *J* = 7.68 Hz, 2H), 7.34 ~ 7.23 (m, 10H), 7.06 ~ 7.01 (m, 1H), 6.99 (s, 1H), 6.73 ~ 6.70 (d, *J* = 9.36 Hz, 1H), 6.62 ~ 6.60 (m, 2H), 3.71 (s, 2H), 3.52 (s, 3H), 1.30 (s, 9H) ppm; ¹³C-NMR (100 MHz, CDCl₃) δ 165.6, 165.0, 164.4, 159.3, 139.3, 139.2, 135.5,

133.4, 130.0, 129.4, 129.1, 128.5, 128.4, 128.3, 128.1, 127.9, 127.5, 127.2, 122.6, 115.3, 113.4, 83.8, 83.6, 78.5, 54.8, 39.3, 27.6 ppm; IR (KBr) 3032, 2978, 2854, 1752, 1601, 1585, 1454, 1395, 1370, 1264, 1154, 1046, 956, 784, , 699, 649 cm⁻¹; HRMS (FAB): calcd for $[C_{35}H_{34}O_7]^+$ ([M]⁺): 566.2305, found: 566.2310; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 85 : 15, flow rate = 1.0 mL/min, 23 °C, λ = 254 nm) retention time: major isomer 10.00 min, minor isomer 12.76 min, 93% ee, $[\alpha]^{20}D = +1.68$ (*c* 1.0, CHCl₃).

1-Benzhydryl 3-(tert-butyl) (R)-2-(benzoyloxy)-2-(3,5-dimethoxybenzyl)malonate (7i)

Following the procedure (**B**) from the substrate **7** using 3,5-dimethoxybenzyl bromide, the title molecule **7i** was obtained as a white solid. mp 107 °C; ¹H-NMR (300 MHz, CDCl₃) δ 8.03 ~ 8.01 (m, 2H), 7.59 ~ 7.54 (m, 1H), 7.44 ~ 7.19 (m, 12H), 6.99 (s, 1H), 6.28 ~ 6.22 (m, 3H), 3.69 (m, 2H), 3.50 (s, 6H), 1.30 (s, 9H) ppm; ¹³C-NMR (100 MHz, CDCl₃) δ 165.6, 164.9, 164.4, 160.4, 139.3, 139.22, 136.21, 133.5, 130.0, 129.5, 128.5, 128.4, 128.3, 128.1, 127.9, 127.4, 127.2, 108.0, 100.0, 83.8, 83.6,

78.5, 55.0, 39.4, 27.6 ppm; IR (KBr) 3064, 3032, 2977, 2321, 1751, 1728, 1598, 1542, 1496, 1395, 1289, 1153, 1108, 1071, 958, 742, 701, 648 cm⁻¹; HRMS (FAB): calcd for $[C_{36}H_{36}O_8]^+$ ($[M]^+$): 596.2410, found: 596.2396; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 85 : 15, flow rate = 1.0 mL/min, 23 °C, $\lambda = 254$ nm) retention time: major isomer 11.02 min, minor isomer 14.14 min, 91% ee, $[\alpha]^{20}_{D} = -5.22$ (c 1.0, CHCl₃).

1-Benzhydryl 3-(tert-butyl) (R)-2-(benzoyloxy)-2-(4-fluorobenzyl)malonate (7j)

Following the procedure (B) from the substrate 7 using 4-fluorobenzyl bromide, the title molecule 7 i was obtained as a pale vellow solid. mp = 112 °C; ¹H-NMR (300 MHz, CDCl₃) δ 8.01 ~ 7.98 (m, 2H), 7.61 ~ 7.57 (m, 1H), 7.46 ~ 7.41 (m, 2H), 7.38 ~ 7.21 (m, 10H), 6.98 (s, 1H), 6.96 ~ 6.92 (m, 2H), 6.82 ~ 6.74 (m, 2H), 3.68 (s, 2H), 1.31 (s, 9H) ppm; ¹³C-NMR (100 MHz, $CDCl_3$) δ 165.4, 164.9, 164.4, 162.1 (d, J = 244.0 Hz), 139.2, 139.1, 133.5, 131.7 (d, J = 8.0 Hz), 129.9, 129.8 (d, J = 3.4 Hz), 129.3, 128.49, 128.47, 128.3, 128.2, 127.9, 127.7, 127.1, 115.0 (d, J = 21.1 Hz), 83.8, 83.7, 78.6, 38.5, 27.6 ppm; IR (KBr) 3033, 2962, 1752, 1729, 1602, 1516, 1496, 1453, 1394, 1370, 1284, 1176, 1155, 1108, 956, 843, 700, 647 cm⁻¹; HRMS (FAB): calcd for [C₃₄H₃₂FO₆]⁺ ([M+H]⁺): 555.2183, found: 555.2180; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 85 : 15, flow rate = 1.0 mL/min, 23 °C, λ = 254 nm) retention time: major isomer 10.02 min, minor isomer 12.04 min, 85% ee, $[\alpha]^{20}_{D} = +5.09$ (c 1.0, CHCl₃).

1-Benzhydryl 3-(tert-butyl) (R)-2-(benzoyloxy)-2-(4-chlorobenzyl)malonate (7k)

Following the procedure (B) from the substrate 7 using 4-chlorobenzyl bromide, the title molecule 7k was obtained as a white solid. mp 145 °C; ¹H-NMR (300 MHz, CDCl₃) δ 8.01 ~ 7.98 (d, J = 7.89 Hz, 2H), 7.62 ~ 7.57 (t, J = 7.32 Hz, 1H), 7.46 ~ 7.41 $(t, J = 7.5 \text{ Hz}, 2\text{H}), 7.32 \sim 7.24 \text{ (m, 10H)}, 7.07 \sim 7.05 \text{ (d, } J = 8.04 \text{ Hz}, 2\text{H}), 6.97 \text{ (s, 1H)}, 6.93 \sim 6.90 \text{ (d, } J = 7.89 \text{ Hz}, 2\text{H}), 3.68 \text{ (d, } J = 7.89 \text{ Hz}, 2\text{Hz}), 3.68 \text{ (d, } J = 7.89 \text{ Hz}, 3\text{Hz}), 3.68 \text$ (s, 2H), 1.32 (s, 9H) ppm; ¹³C-NMR (100 MHz, CDCl₃) δ 165.4, 165.9, 164.4, 139.2, 139.0, 133.6, 133.1, 132.54, 131.49, 129.9, 129.2, 128.5, 128.3, 128.2, 128.0, 127.7, 127.1, 83.8, 83.7, 78.6, 38.6, 27.6 ppm; IR (KBr) 3033, 2979, 1751, 1729, 1648, 1585, 1542, 1409,

1370, 1290, 1045, 910, 814, 712, 700 cm⁻¹; HRMS (FAB): calcd for [C₃₄H₃₂ClO₆]⁺ ([M+H]⁺): 571.1887, found: 571.1884; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 85 : 15, flow rate = 1.0 mL/min, 23 °C, $\lambda = 254$ nm) retention time: major isomer 9.77 min, minor isomer 12.14 min, 80% ee, $[\alpha]^{20}D = +6.06$ (c 1.0, CHCl₃).

1-Benzhydryl 3-(tert-butyl) (R)-2-(benzoyloxy)-2-(4-bromobenzyl)malonate (71)

Following the procedure (**B**) from the substrate 7 using 4-fluorobenzyl bromide, the title molecule 71 was obtained as a colorless crystal. mp 64 °C; ¹H-NMR (300 MHz, CDCl₃) δ 8.01 ~ 7.98 (m, 2H), 7.62 ~ 7.56 (m, 1H), 7.50 ~ 7.41 (m, 2H), 7.38 ~ 7.18 (m, 12H), 6.97 (s, 1H), 6.87 ~ 6.82 (m, 2H), 3.66 (s, 2H), 1.32 (s, 9H) ppm; 13 C-NMR (100 MHz, CDCl₃) δ 165.3, 164.9, 164.4, 139.2, 139.0, 133.6, 133.1, 131.8, 131.3, 129.9, 129.2, 128.5, 128.3, 128.2, 128.0, 127.6, 127.1, 121.3, 83.8, 83.6, 78.6,

38.7, 27.6 ppm; IR (KBr) 2930, 2310, 1750, 1730, 1602, 1489, 1452, 1395, 1316, 1176, 1070, 1012, 954, 712, 648 cm⁻¹; HRMS (FAB): calcd for $[C_{34}H_{32}BrO_6]^+$ ($[M+H]^+$): 615.1382, found: 615.1364; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 85 : 15, flow rate = 1.0 mL/min, 23 °C, $\lambda = 254$ nm) retention time: major isomer 10.83 min, minor isomer 14.23 min, 86% ee, $[\alpha]^{20}_{D} = +7.79 \ (c \ 1.0, \text{CHCl}_3).$

1-Benzhydryl 3-(tert-butyl) (R)-2-(benzoyloxy)-2-(4-nitrobenzyl)malonate (7m)

Following the procedure (B) from he substrate 7 using 4-nitrobenzyl bromide, the title molecule 7m was obtained as a white solid. mp 160 °C; ¹H-NMR (300 MHz, CDCl₃) δ 8.02 ~ 7.99 (d, J = 5.31 Hz, 2H), 7.93 ~ 7.88 (d, J = 8.79 Hz, 2H), 7.65 ~ 7.59 (m, 1H), 7.49 ~ 7.43 (m, 2H), 7.33 ~ 7.17 (m, 10H), 7.13 ~ 7.09 (m, 2H), 6.98 (s, 1H), 3.82 (s, 2H), 1.34 (s, 9H) ppm; ¹³C-NMR (100 MHz, CDCl₃) δ 165.0, 164.8, 164.2, 147.1, 141.8, 139.0, 138.79, 133.81, 131.0, 129.9, 128.9, 128.6, 128.6, 128.4, 128.3, 128.1, 127.6, 127.1, 123.3, 84.2, 83.3, 78.8, 39.0, 27.6 ppm; IR (KBr) 3614, 2979, 1868, 1731, 1688, 1648, 1603, 1523, 1495, 1453, 1396,

1317, 1284, 1109, 1070, 954, 760, 700 cm⁻¹; HRMS (FAB): calcd for $[C_{34}H_{32}NO_8]^+$ ([M+H]⁺): 582.2128, found: 582.2140; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 80 : 20, flow rate = 1.0 mL/min, 23 °C, $\lambda = 254$ nm) retention time: minor isomer 13.55 min, major isomer 21.87 min, 81% ee, $[\alpha]^{20}_{D} = -1.28$ (c 1.0, CHCl₃).

1-Benzhydryl 3-(*tert*-butyl) (R)-2-(benzoyloxy)-2-(naphthalen-2-ylmethyl)malonate (7n)

Following the procedure (B) from the substrate 7 using 2-(bromomethyl) naphthalene, the title molecule 7n was obtained as a white oil. ¹H-NMR (300 MHz, CDCl₃) δ 8.02 ~ 8.00 (m, J = 7.53 Hz, 2H), 7.76 ~ 7.73 (m, 1H), 7.63 ~ 7.58 (m, 2H), 7.55 ~ 7.16 (m, 17H), 6.98 (s, 1H), 3.88 (s, 2H), 1.31 (s, 9H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 165.6, 165.1, 164.5, 139.3, 139.1, 133.4, 133.2, 132.5, 131.6, 130.0, 129.4, 129.2, 128.5, 128.4, 128.25, 128.18, 127.9, 127.7, 127.6, 127.5, 127.1, 125.9, 125.7, 84.0, 83.7, 78.6, 39.5, 27.6 ppm; IR (KBr) 3648, 2928, 1748, 1689, 1647, 1542, 1489, 1372, 1047, 842, 702 cm⁻¹; HRMS (FAB): calcd for [C₃₈H₃₅O₆]⁺

([M+H]⁺): 587.2434, found: 587.2421; The enantioselectivity was determined by chiral HPLC analysis (DIACEL Chiralpak AD-H, hexane : 2-propanol = 85 : 15, flow rate = 1.0 mL/min, 23 °C, $\lambda = 254$ nm) retention time: major isomer 10.68 min, minor isomer 15.57 min, 88% ee, $[\alpha]^{20}D = +16.56$ (c 1.0, CHCl₃).

(C) Derivatization

(R)-1-Methyl 3-tert-butyl 2-(benzoyloxy)-2-benzylmalonate (13)

Pd/C (100 mg) was added to a methanolic solution (50 mL) of 7e (2.6 g, 4.85 mmol) and the reaction mixture was stirred for 1 hr under 1 atm of H₂. The reaction mixture was filtered over a pad of celite to remove Pd/C and the methanol solvent was evaporated in *vacuo* to afford mono-acid (12). Without further purification, 2 equiv. of TMS diazomethane (10 mmol) was added to a toluene-CH₃OH (4:1) solution of 12 and the reaction mixture was stirred for 1 hr at 0 °C. After completion of

reaction, the mixture was quenched with acetic acid and followed by evaporation. The residue was diluted with EtOAc (100 mL), washed with brine (50 mL), dried over anhydrous MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by column chromatography (silica gel, hexanes: EtOAc = 20:1) to afford **13** (1.86 g, 99% yield) as pale yellow oil. ¹H-NMR (300 MHz, CDCl₃) δ 8.05 ~ 8.03 (d, *J* = 7.14 Hz, 2H), 7.59 ~ 7.54 (t, *J* = 7.2 Hz, 1H), 7.45 ~ 7.40 (t, *J* = 7.6 Hz, 2H), 7.25 ~ 7.23 (m, 5H), 3.78 (s, 3H), 3.66 (s, 2H), 1.42 (s, 9H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 167.2, 165.0, 164.7, 134.2, 133.4, 130.3, 130.0, 129.3, 128.4, 128.2, 127.3, 83.6, 83.5, 52.9, 39.9, 27.7 ppm; IR (KBr) 3064, 3033, 2979, 1755, 1731, 1602, 1584, 1496, 1453, 1438, 1394, 1370, 1285, 1250, 1208, 1155, 1109, 1057, 958, 843, 713 cm⁻¹; HRMS (FAB): calcd for [C₂₂H₂₅O₆]⁺([M+H]⁺): 385.1651, found: 385.1652; [α]²⁰_D = + 3.46 (*c* 1.0, CHCl₃).

(R)-tert-Butyl 2-benzyl-2,3-dihydroxypropanoate (14)

To a THF solution (20 mL) of **13** (1.02 g, 2.66 mmol) was added a THF solution (3.4 mL) of LiAl(Ot-Bu)₃H (13.31 mmol) at -78 °C. The reaction solution was warmed to room temperature and stirred for 5 hours at 60 °C. The reaction was quenched by Rochelle solution (10 mL), diluted with EtOAc (100 mL), washed with brine (50 mL x 2), dried over anhydrous MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by column chromatography (silica gel, hexanes: EtOAc = 4:1) to afford **14** (0.62 g,

92% yield) as color less oil. ¹H-NMR (300 MHz, CDCl₃) δ 7.30 ~ 7.19 (m, 5H), 3.85 (d, *J* = 10.98 Hz, 1H), 3.65 (d, *J* = 10.98 Hz, 1H), 2.94 (d, *J* = 13.73 Hz, 1H), 2.88 (d, *J* = 13.73 Hz, 1H), 1.42 (s, 9H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 173.5, 135.5, 130.4, 128.3, 127.2, 83.6, 78.8, 68.3, 41.2, 28.2 ppm; IR (KBr) 3470, 3032, 2978, 2930, 1728, 1496, 1456, 1395, 1370, 1281, 1220, 1160, 1121, 1035, 938, 845, 773, 701, 673 cm⁻¹; HRMS (FAB): calcd for [C₁₄H₂₁O₄]⁺ ([M+H]⁺): 253.1440, found: 253.1444; [α]²⁰_D = -4.92 (*c* 1.0, CHCl₃).

(R)-tert-Butyl 2-benzyl-2-hydroxy-3-[(methylsulfonyl)oxy]propanoate (15)

To a CH₂Cl₂ solution (6 mL) of **14** (150 mg, 0.59 mmol) was added MsCl (56 μ L, 0.72 mmol) and Et₃N (100 μ L, 0.72 mmol) at -10 °C. After stirring for 1 hr at -10 °C, the reaction mixture was evaporated and the residue was diluted with EtOAc (30 mL), washed with brine (10 mL), dried over anhydrous MgSO₄, filtered, and concentrated in *vacuo*. The residue was purified by column chromatography (silica gel, hexanes: EtOAc = 4:1) to afford **15** (166 mg, 85% yield) as colorless oil. ¹H-NMR (300 MHz, CD₃OD)

δ 7.29 ~ 7.21 (m, 5H), 4.45 (d, J = 9.98 Hz, 1H), 4.18 (d, J = 9.98 Hz, 1H), 3.08 (s, 3H), 3.00 (d, J = 13.74 Hz, 1H), 2.93 (d, J = 13.74 Hz, 1H), 1.41

(s, 9H) ppm; ¹³C-NMR (125 MHz, CD₃OD) δ 172.4, 136.3, 131.6, 129.1, 128.0, 84.1, 78.1, 75.3, 42.3, 37.4, 28.1 ppm; IR (KBr) 3501, 3032, 2978, 2939, 1733, 1496, 1457, 1395, 1359, 1254, 1177, 1134, 993, 967, 837, 793, 741, 702 cm⁻¹; HRMS (FAB): calcd for [C₁₅H₂₃O₆S]⁺ ([M+H]⁺): 331.1215, found: 331.1212; $[\alpha]^{20}_{D} = -3.18$ (*c* 1.0, CHCl₃).

(R)-tert-Butyl 2-benzyloxirane-2-carboxylate (16)

To a CH₃CN solution (6 mL) of 14 (118 mg, 0.36 mmol) was added K₂CO₃ (500 mg, 3.6 mmol). The reaction mixture was refluxed for 6 hours. The reaction mixture was diluted with EtOAc (50 mL), washed with brine (10 mL x 2), dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes: EtOAc = 10:1) to afford **16** (69 mg, 84% yield) as colorless oil. ¹H-NMR (300 MHz, CDCl₃) δ 7.32 ~ 7.19 (m, 5H), 3.33 (d, J = 14.85 Hz, 1H), 3.05 $(d, J = 14.85 \text{ Hz}, 1\text{H}), 3.00 (d, J = 5.87 \text{ Hz}, 1\text{H}), 2.67 (d, J = 5.87 \text{ Hz}, 1\text{H}), 1.38 (s, 9\text{H}) \text{ ppm}; {}^{13}\text{C-NMR} (125 \text{ MHz}, \text{CDCl}_3) \delta 169.0, 136.2, 129.8, 128.4, 128.4)$ 126.9, 82.5, 57.5, 37.2, 31.1, 27.9 ppm; IR (KBr) 2979, 2932, 1738, 1496, 1456, 1393, 1369, 1304, 1257, 1215, 1157, 1122, 1076, 1032, 939, 846, 771,

736, 700 cm⁻¹; HRMS (FAB): calcd for $[C_{14}H_{19}O_3]^+$ ($[M+H]^+$): 235.1334, found: 235.1330; $[\alpha]^{20}D = +13.92$ (c 1.0, CHCl₃).

(S)-2-Methyl-3-phenylpropane-1,2-diol (17)

To a THF solution (0.5 mL) of epoxide **16** (9.5 mg, 0.041 mmol) was added a THF solution (0.2 mL) of LiAlH₄ (8 mg, 0.2 mmol) at -78 °C. The reaction solution was stirred for 1 hr and gradually raised the temperature to room temperature. The reaction was quenched by Rochelle solution (1 mL), diluted with EtOAc (10 mL), washed with brine (5 mL), dried over anhydrous MgSO₄, filtered, and concenturated in *vacuo*. The residue was purified by column chromatography (silica gel, hexanes: EtOAc = 1:1) to

afford **17** (6.8 mg, 99% yield) as a colorless oil. ¹H-NMR (300 MHz, CDCl₃) δ 7.35 ~ 7.22 (m, 5H), 3.51 (d, *J* = 10.8 Hz, 1H), 3.44 (d, *J* = 10.8 Hz, 1H), 2.86 (dd, *J* = 13.29 Hz, 1H), 2.79 (dd, *J* = 13.29 Hz, 1H), 1.86 (brs, OH, 1H), 1.61 (brs, OH, 1H), 1.15 (s, 3H) ppm; ¹³C-NMR (125 MHz, CDCl₃) δ 137.1, 130.6, 128.6, 126.9, 73.1, 69.5, 44.9, 23.9 ppm; The spectral data were exactly same as previously reported data; $[\alpha]_D^{20} = -9.6$ (*c* 1.0, EtOH 95%); lit^{S4}(*R*)-**17**, $[\alpha]_D^{20} = +11.4$ (*c* 1.0, EtOH 95%), 94% ee.

(4) ¹H & ¹³C NMR Spectra

¹H-NMR of compound (3)

¹H-NMR of compound (5)

 ^{13}C -NMR of compound (5)

¹H-NMR of compound (6)

¹*H*-*NMR of compound* (7)

¹*H*-*NMR of compound* (**5a**)

¹*H*-*NMR of compound* (6a)

¹*H*-*NMR of compound* (7a)

¹³C-NMR of compound (7a)

¹*H*-*NMR of compound* (7b)

¹*H*-*NMR of compound* (7c)

¹³C-NMR of compound (7c)

¹*H*-*NMR of compound* (**7d**)

¹³C-NMR of compound (7d)

¹*H*-*NMR of compound* (7e)

¹³C-NMR of compound (7e)

¹*H*-*NMR* of compound (**7f**)

¹*H*-*NMR of compound* (7g)

¹*H*-*NMR of compound* (**7h**)

¹³C-NMR of compound (7i)

¹*H*-*NMR of compound* (7j)

¹³C-NMR of compound (7j)

¹*H*-*NMR of compound* (**7** \mathbf{k})

¹³C-NMR of compound (7k)

¹*H*-*NMR of compound* (71)

¹*H*-*NMR of compound* (7m)

¹³C-NMR of compound (7m)

¹*H*-*NMR of compound* (**7n**)

¹³C-NMR of compound (7n)

¹³C-NMR of compound (15)

¹*H*-*NMR of compound* (**16**)

¹³C-NMR of compound (**16**)

¹³C-NMR of compound (17)</sup>

(4) Chiral HPLC spectra

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 99 : 1,

 $\lambda = 254$ nm, flow rate = 1 mL/min

Sample ID: rac-5a

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 99 : 1,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-5a

Instrument Name: L-2000

Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 95 : 5,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-6a

Totals

7791626

100.000

Area Percent Report

Instrument Name: L-2000

Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 95 : 5,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-6a

Instrument Name: L-2000

Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7a

Ivaine	Ketention Time	Alea	Area rercent	Integration Codes
1	11.113	2448202	47.787	mm
2	12.443	2674948	52.213	mm
Totals		5123150	100.000	

Area Percent Report

Instrument Name: L-2000

Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-7a

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7b

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-7b

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7c

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-7c

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7d

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-7d

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7e

Totals

191006692

100.000

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-7e

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7f

Z250 Ph O D 2000 Ph Ot-Bu ò 'Ph 0 1740 Ö 1500 50.070 1250 rac-7f 3 1000 750 600 240 12 15 18 17 UV Results Retention Time Area Percent Integration Codes Name Area 8.863 104653034 50.070 1 mm 2 104358549 49.930 II 12.047 Tota1s 209011583 100.000

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-7f

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07

Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7g

Totals

24106462

100.000

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-7g

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7h

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

OMe

Sample ID: chiral-7h

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7i

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-7i

Instrument Name: L-2000

Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7j

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-7j

Instrument Name: L-2000

Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7k

Totals

350 Ph O O Ot-Bu Ph-300 Ph 0 250 200 CI rac-7k 150 12,387 49.921 0.010 100 7.6 9.0 8.5 0.0 0.5 10.0 10.5 11.0 11.5 12.0 13.0 11.6 14.D 14.5 15.0 15.5 12.6 UV Results Retention Time Area Percent Integration Codes Name Area 1 10.010 10198026 50.079 IB 2 12.387 10165832 49.921 BI

20363858

100.000

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-7k

Instrument Name: L-2000

Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-71

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-71

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 80 : 20,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7m

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 80 : 20,

 $\lambda = 254$ nm, flow rate = 1mL/min

0

0"

0

NO₂

*chiral-*7m

22 20

24

Ot-Bu

Ph

'Ph

20

90.635

100.000

9.365

21

Area Percent Integration Codes

BB

Π

<u>`0</u>′

Ö

Ph

95.617 17.427

12 10 19

15 18

Area

Sample ID: chiral-7m

Instrument Name: L-2000

Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: rac-7n

Area Percent Report

Instrument Name: L-2000 Software Version: Version LaChrom 8908800-07 Acquisition Method: Diacel Chiralpak AD-H, Hexane : 2-Propanol = 85 : 15,

 $\lambda = 254$ nm, flow rate = 1mL/min

Sample ID: chiral-7n

(6) References

S1. Lygo, B.; Crosby, J.; Lowdon, T. R.; Wainwright, P. G. Tetrahedron 2001, 57, 2391.

S2. Ha, M. W.; Lee, M.; Choi, S.; Kim, S.; Hong, S.; Park, Y.; Kim, M.-h.; Kim, T.-S.; Lee, J.; Lee, J. K.; Park, H.-g. 2015, 80, 3270.

S3. Hong, S.; Kim, M.; Jung, M.; Ha, M. W.; Lee, M.; Park, Y.; Kim, M.-h.; Kim, T.-S.; Lee, J.; Park, H.-g. 2014, 12, 1510.

S4. Shoba, V. M.; Thacker, N. C.; Bochat, A. J.; Takacs, J. M. Angew. Chem., Int. Ed. 2016, 55, 1465