## SUPPORTING INFORMATION

## Performance optimization of MnO<sub>2</sub>/ carbon nanotubes substrate for efficient catalytic oxidation of lowconcentration NO at room temperature

Tao Zhang,<sup>a</sup> Dongdong Wang,<sup>d</sup> Zhenyuan Gao, <sup>a</sup> Kunfeng Zhao,<sup>a</sup> Yousong Gu,<sup>c</sup> Yue

## Zhang<sup>c</sup> and Dannong He<sup>a,b</sup>

<sup>a</sup>National Engineering Research Center for Nanotechnology, Shanghai, China

<sup>b</sup>School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

<sup>c</sup>State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China

<sup>d</sup> Whaley Technology Co., Ltd, Shanghai, China

Figure S1 presents the XRD patterns of pure MnO<sub>2</sub> powder, pure CNTs, Reduced-MOCNT, MnO<sub>2</sub>/ TiO<sub>2</sub>, MnO<sub>2</sub>/ ZrO<sub>2</sub>, and MnO<sub>2</sub>/ CeO<sub>2</sub>. The pure MnO<sub>2</sub> are testified as the monoclinic birnessite MnO<sub>2</sub> in the XRD analysis (JCPDS no. 80-1098). The XRD pattern of the CNT shows three different peaks at 25.8°, 43.1° and 54.1°, which can be indexed as the (002), (100) and (004) reflections of graphite, respectively<sup>1</sup>. The diffraction peaks of Reduced-MOCNT correspond well to Mn<sub>3</sub>O<sub>4</sub> (JCPDS no. 18-0803). The XRD patterns of MnO<sub>2</sub>/ CeO<sub>2</sub>, MnO<sub>2</sub>/ ZrO<sub>2</sub>, and MnO<sub>2</sub>/ TiO<sub>2</sub> catalysts are shown in Figure S1 (b). The XRD patterns presented here did not show intense or sharp peaks for manganese oxides. The diffraction patterns of these mixed oxides showed broad reflections due to CeO<sub>2</sub> of a cubic fluorite structure (JCPDS no. 43-1002), ZrO<sub>2</sub> of a monoclinic baddeleyite structure (JCPDS no. 37-1484) and TiO<sub>2</sub> of a tetragonal anatase structure (JCPDS no. 21-1272).



Figure S1. XRD patterns of (a) Reduced-MOCNT, pristine MnO<sub>2</sub>, CNT, (b) MnO<sub>2</sub>/ TiO<sub>2</sub>, MnO<sub>2</sub>/ZrO<sub>2</sub>, and MnO<sub>2</sub>/CeO<sub>2</sub>

## REFERENCES

 Z. Sun, Z. Liu, B. Han, Y. Wang, J. Du, Z. Xie and G. Han, *Adv. Mater.*, 2005, 17, 928–932.