Electronic Supplementary Information

Ethylenediamine-Modified Amyloid Fibrils of Hen Lysozyme with Stronger Adsorption Capacity as Rapid Nano-biosorbents for Removal of Chromium(VI) Ions

Wai-Hong Leung, Pui-Kin So, Wai-Ting Wong, Wai-Hung Lo and Pak-Ho Chan*

State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China

*Corresponding Author

E-mail: pakho999@yahoo.com.hk

Fig. S1 Profiles of Cr(VI) removal efficiencies against different concentrations of ethylenediamine-modified lysozyme nanofibers and unmodified lysozyme nanofibers. Red curve: Cr(VI) adsorption by modified lysozyme nanofibers; black curve: Cr(VI) adsorption by unmodified lysozyme nanofibers. Initial Cr(VI) concentration = $3.0 \text{ mg } \text{L}^{-1}$; pH = 7.0. The concentration of Cr(VI) after adsorption was determined using acidified diphenylcarbazide (DPC) as the probing agent.

Fig. S2 Profiles of Cr(VI) adsorption capacities of ethylenediamine-modified lysozyme nanofibers and unmodified lysozyme nanofibers with and without NaCl. Red curve: Cr(VI) adsorption by modified lysozyme nanofibers; black curve: Cr(VI) adsorption by unmodified lysozyme nanofibers. The concentrations of Cr(VI) and lysozyme nanofibers (modified and unmodified forms) were 3.0 mg L⁻¹ and 1.0 mg mL⁻¹ (respectively); pH = 7.0.

Fig. S3 Profiles of Cr(VI) adsorption capacities of ethylenediamine-modified lysozyme nanofibers and unmodified lysozyme nanofibers with and without NaNO₃. Red curve: Cr(VI) adsorption by modified lysozyme nanofibers; black curve: Cr(VI) adsorption by unmodified lysozyme nanofibers. The concentrations of Cr(VI) and lysozyme nanofibers (modified and unmodified forms) were 3.0 mg L⁻¹ and 1.0 mg mL⁻¹ (respectively); pH = 7.0.

	Adsorption equilibrium time	References
Bacillus cereus (dead)	2 h	S. Sultan, K. Mubashar, M.
		Faisal, African Journal of
		Microbiology Research, 2012, 6,
		3329-3336.
Inactivated fungal	24 h	L. Ramrakhiani, R. Majumder,
Termitomyces		S. Khowala, Chemical
clypeatus		Engineering Journal, 2011, 171,
		1060-1068.
Bio-chars from	900 min	H. Deveci, Y. Kar, Journal of
pyrolysis of <i>P</i> .		Industrial and Engineering
terebinthus L. and		Chemistry, 2013, 19, 190-196.
alumina		
Acid treated	5 h	M. Lopez-Garica, P. Lodeiro, R.
macroalgae Sargassum		Herrero, M. E. S. de Vicente,
muticum		Journal of Industrial and
		Engineering Chemistry, 2012,
		18, 1370-1376.
Beal fruit (Aegle	240 min	J. Anandkumar, B. Mandal,
marmelos correa) shell		Journal of Hazardous Materials,
activated carbon		2009, 168, 633-640.
Silver impregnation	5 h	S. P. Dubey, K. Gopal, Journal
groundnut husk		of Hazardous Materials, 2007,
		145, 465-470.
Sunflower stem	120 min	M. Jain, V. K. Garg, K.
		Kadirvelu, Journal of
		Environmental Management,
		2010, 91, 949-957.
Autoclaved Aspergillus	135 min	K. K. Deepa, M. Sathishkumar,
flavus		A. R. Binupriya, G. S.
		Murugesan, K. Swaminathan, S.
		E. Yun, Chemosphere, 2006, 62,
		833-840.

 Table S1
 Physical parameters of previously reported biomasses for Cr(VI)

 adsorption

Fig. S4 Langmuir isotherm and Freundlich isotherm fittings for the adsorption of Cr(VI) by ethylenediamine-modified lysozyme nanofibers. Black curve: Langmuir isotherm model; red curve: Freundlich isotherm model. Concentration of modified lysozyme nanofibers = 1.0 mg mL⁻¹; pH = 7.0.

Fig. S5 Langmuir isotherm and Freundlich isotherm fittings for the adsorption of Cr(VI) by unmodified lysozyme nanofibers. Black curve: Langmuir isotherm model; red curve: Freundlich isotherm model. Concentration of unmodified lysozyme nanofibers = 1.0 mg mL⁻¹; pH = 7.0.

Table S2Results of the Langmuir isotherm and Freundlich isotherm studies onthe adsorption of Cr(VI) by ethylenediamine-modified lysozyme nanofibers andunmodified lysozyme nanofibers.

Ethy	vlenedia	ımine-r	nodified	lvsozvme	nanofibers
L'un	yichcult		nounicu	1,502,1110	manomotio

	Langmuir isotherm model		Freundlich isotherm model
$q_{max} (\mathrm{mg} \mathrm{g}^{-1})$	3.74	п	3.29
K_L (L mg ⁻¹)	3.39	$K_F (\text{mg g}^{-1})(\text{L mg}^{-1})^{1/n}$	2.59
R ²	0.9959	R ²	0.9289

Unmodified lysozyme nanofibers

	Langmuir isotherm model		Freundlich isotherm model
$q_{max} (\mathrm{mg \ g^{-1}})$	3.26	п	2.26
K_L (L mg ⁻¹)	0.86	$K_F (\mathrm{mg \ g^{-1}})(\mathrm{L \ mg^{-1}})^{1/n}$	1.42
R ²	0.9843	R ²	0.9319

Fig. S6 Reusability study of ethylenediamine-modified lysozyme nanofibers in the removal of Cr(VI) ions. In each cycle, the modified lysozyme nanofibers underwent Cr(VI) adsorption and then Cr(VI) desorption using 500 mM NaCl (4.0 mL) and subsequently deionized water (4.0 mL) as the desorbing agent. The Cr(VI) removal efficiency of the modified lysozyme nanofibers was then determined after adsorbing Cr(VI) ions. The concentrations of Cr(VI) and modified lysozyme nanofibers were 3.0 mg L⁻¹ and 1.0 mg mL⁻¹ (respectively); pH = 7.0.

Fig. S7 Cr(VI) removal efficiencies of ethylenediamine-modified lysozyme nanofibers and unmodified lysozyme nanofibers in industrial wastewater and river water. (a) Cr(VI) removal efficiencies of modified and unmodified lysozyme nanofibers in industrial wastewater; (b) Cr(VI) removal efficiencies of modified and unmodified lysozyme nanofibers in river water. The concentrations of Cr(VI) and lysozyme nanofibers (modified and unmodified forms) were 3.0 mg L⁻¹ and 1.0 mg mL⁻¹, respectively.