Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

- Fig. S1 XPS spectra of C1s for RGO-CeO₂, RGO and GO.
- **Fig. S2** (a) Effect of SO_2 on the NO_X (x=1, 2) removal in the present process and (b) the pH variation after introducing exhausted gas into water-isopronol solutions. The SO_2 content is about 500 ppm.
- **Fig. S3** Ion chromatography of oxidation products for catalytic ozonation over RGO-CeO₂, RGO and CeO₂.
- **Table S1** Material balance summary for $NO_X(x=1, 2)$.
- **Fig. S4** (a) N₂ adsorption desorption isotherm curves and (b) the pore size distribution curves for RGO-CeO₂, RGO, and CeO₂.
- Fig. S5 Classification of surface hydroxyl groups.
- Fig. S6 IR spectra of (a) RGO-CeO₂ and (b) CeO₂ before and after H₂O treatment.
- **Fig. S7** IR spectra of (a) RGO-CeO₂-O₃ and (b) CeO₂-O₃ before and after NO treatment; (c) RGO-CeO₂ and (d) CeO₂ before and after NO treatment.

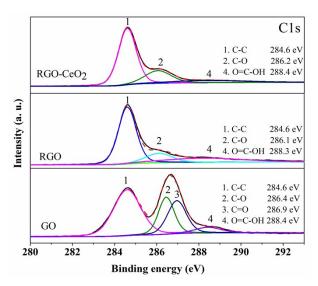
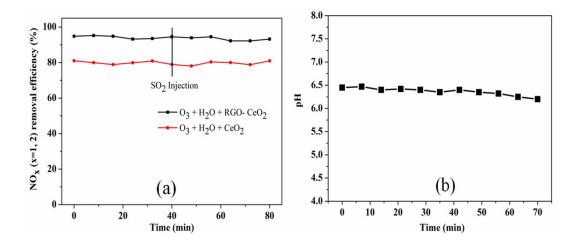
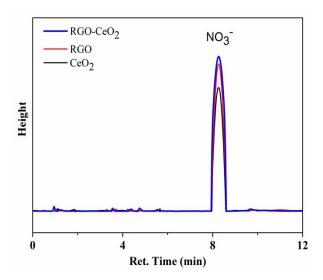
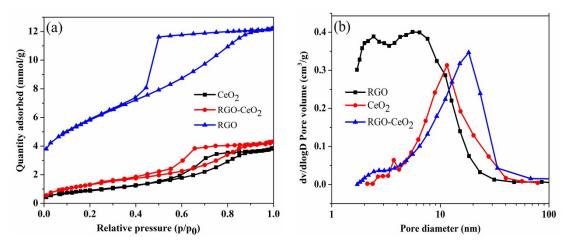



Fig. S1 XPS spectra of C1s for RGO-CeO₂, RGO and GO.

Fig. S2 (a) Effect of SO_2 on the NO_X (x=1, 2) removal in the present process and (b) the pH variation after introducing exhausted gas into water-isopronol solutions. The SO_2 content is about 500 ppm.

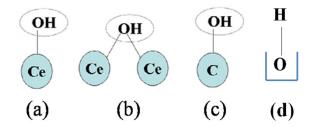

Fig. S3 Ion chromatography of oxidation products for catalytic ozonation over RGO- CeO_2 , RGO and CeO_2 .

Table S1 Material balance summary for $NO_X(x=1, 2)$.

J 11 () /			
Category	RGO-CeO ₂	RGO	CeO ₂
Time t, min	500	500	500
Gas flow Q, mL min-1	185	185	185
Solution volume V_L , mL	50	50	50
C_{in} (NO _X), ppm	465	455	462
$C_{out}(NO_X)$, ppm	15	28	87
C(NO ₂ -) actual value, mg L-1	0	0	0
C(NO ₃ -) actual value, mg L-1	1981	1858	1642
C(NO ₃ -) calculation value, mg L ⁻¹	2147	2037	1789
C(NO ₃ -) error, %	7.7	8.8	8.2
·			

Fig. S4 (a) N₂ adsorption desorption isotherm curves and (b) the pore size distribution curves for RGO-CeO₂, RGO, and CeO₂.

Fig. S5 Classification of surface hydroxyl groups. Surface -OH that connects Ce (a), Ce and Ce (b), C (c), and surface -OH at an oxygen vacancy site (d). The oxygen vacancy is represented by \square .

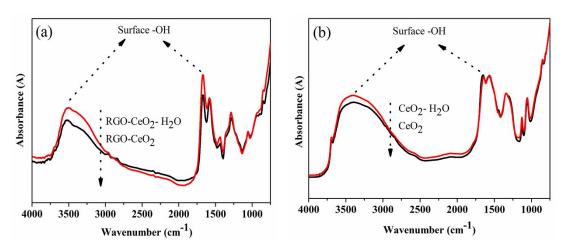
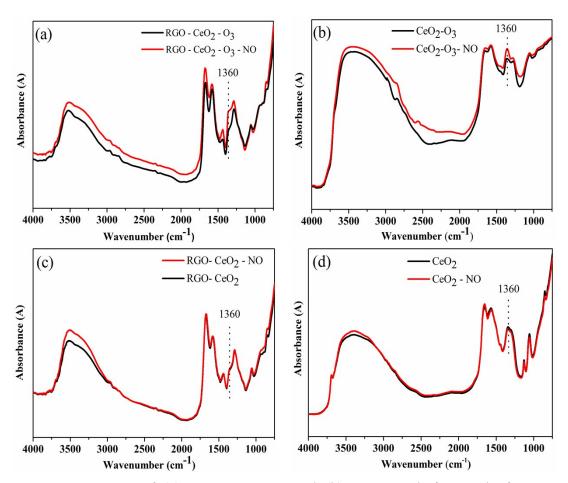



Fig. S6 IR spectra of (a) RGO-CeO₂ and (b) CeO₂ before and after H₂O treatment.

Fig. S7 IR spectra of (a) RGO-CeO₂-O₃ and (b) CeO₂-O₃ before and after NO treatment; (c) RGO-CeO₂ and (d) CeO₂ before and after NO treatment.