Regioselective $\mathrm{BF}_{3} \cdot \mathbf{E t}_{2} \mathbf{O}$-catalyzed $\mathbf{C}-\mathrm{H}$ Functionalization of Indoles and Pyrroles with Reaction of α-Diazophosphonates

Yan Cai, ${ }^{\text {a,c }}$ Yuming Li, ${ }^{a}$ Minxuan Zhang, ${ }^{a}$ Jiaxin Fu, ${ }^{\text {a }}$ and Zhiwei Miao*a, ${ }^{\text {b }}$
${ }^{a}$ State Key Laboratory and Institute of Elemento-Organic Chemistry, ${ }^{b}$ Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China, ${ }^{c}$ Tianjin International Joint Academy of Biomedicine, Tianjin 300457, P. R. China, Fax: (+86)-22-2350-2351; e-mail: miaozhiwei@nankai.edu.cn

Supporting Information

List of contents (pages)

Abstract

1. General comments...S1

\section*{General Comments.}

All reactions and manipulations were performed using standard Schlenk techniques. Solvents were dried and distilled prior to use according to the standard methods. Unless otherwise indicated, all materials were obtained from commercial sources, and used as purchased without dehydration. Flash column chromatography was performed on silica gel (particle size 10-40 $\mu \mathrm{m}$, Ocean Chemical Factory of Qingdao, China). Nitrogen gas (99.999\%) was purchased from Boc Gas Inc. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra were recorded in CDCl_{3} at Bruker 400 MHz spectrometers, TMS served as internal standard ($\delta=0 \mathrm{ppm}$) for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\mathrm{H}_{3} \mathrm{PO}_{4}$ served as internal standard ($\delta=0 \mathrm{ppm}$) for ${ }^{31} \mathrm{P}$ NMR. The crystal structure was determined on a Bruker SMART 1000 CCD diffractometer. Mass spectra were recorded on a LCQ advantage spectrometer with ESI resource. HR-MS were recorded on APEXII and ZAB-HS spectrometer. Melting points were determined on a T-4 melting point apparatus (uncorrected). Optical rotations were recorded on a Perkin Elemer 241 Polarimeter.

General procedure for the preparation of 3 and 4:

The $7.2 \mu \mathrm{~L} \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.056 \mathrm{mmol})$ and 50 mg indole $(0.42 \mathrm{mmol})$ in an oven-dried Schlenk tube was dissolved in 2 mL of freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under nitrogen. Dialkyl α-diazophosphonates $\mathbf{1}$ (0.28 mmol) was diluted with 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was drawn into a gastight syringe. It was then added to the reaction mixture dropwise over a period of 1.5 h with the help of a syringe pump. After the addition was complete, the reaction mixture was stirred for another 2 hour at $25^{\circ} \mathrm{C}$. The solvent was then removed under reduced pressure and the crude residue was purified by silica gel chromatography with the eluent $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 15: 1(\mathrm{v}: \mathrm{v})\right]$ to give the corresponding products $\mathbf{3}$ and 4.

White solid; mp: $146-147{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.45$ (d, $J=48.0$ Hz, 1H, N-H), 7.70-7.79 (m, 2H, Ph), 7.60-7.68 (m, 2H, Ph), 7.55 (d, $J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.09-7.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph},=\mathrm{CH}), 6.99(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 3.78-4.25\left(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{OCH}_{2}, \mathrm{CH}_{2} \mathrm{P}\right), 2.71(\mathrm{dd}, J=20.4,15.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.23(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 136.84,133.72,131.93,124.30,122.85(\mathrm{~s}, \mathrm{Ph}), 122.00(\mathrm{~s}$, $=\mathrm{C}), 121.97,120.51,119.69,119.23(\mathrm{~s}, \mathrm{Ph}), 111.72(\mathrm{~s},=\mathrm{CH}), 61.71\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.56(\mathrm{~d}, J$ $\left.=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 58.10(\mathrm{~d}, J=4.3 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 34.94\left(\mathrm{~d}, J=141.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 27.52\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 16.20(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}$), $16.12\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.75$ (s); ESI-HRMS calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 463.1393$, Found: 463.1394 .

The mole ratio of $\mathbf{3 a}$ and $\mathbf{4 a}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

carboxylate (3d):

White solid; mp: 163-164 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.13(\mathrm{~s}, 1 \mathrm{H}$, N-H), 7.71-7.77 (m, 2H, Ph), 7.64-7.69 (m, 2H, Ph), 7.57 (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ph}), 7.29(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.08$ ($\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}$), 3.90-4.19 (m, 3H, $\left.\mathrm{OCH}_{2}, \mathrm{CH}_{2} \mathrm{P}\right), 3.71(\mathrm{dd}, J=$ $\left.17.9,15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 3.39-3.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29(\mathrm{t}, J=$ 7.1 Hz, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.57\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.08,168.61(\mathrm{~s}$, $\mathrm{C}=\mathrm{O}), 138.11,133.62,132.39,125.30,124.66,122.63,121.73,121.65,120.35(\mathrm{~s}, \mathrm{Ph}), 115.50(\mathrm{~s},=\mathrm{CH})$, $61.75\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.10\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 58.72(\mathrm{~d}, J=3.5 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 51.62\left(\mathrm{~s}, \mathrm{OCH}_{3}\right)$, $34.49\left(\mathrm{~d}, J=140.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 27.76\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 16.31\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 15.28\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.09(\mathrm{~s})$; ESI-HRMS calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 521.1448$, Found: 521.1441.

The mole ratio of $\mathbf{3 d}$ and $\mathbf{4 a}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

Diethyl (2-(1,3-dioxoisoindolin-2-yl)-2-(5-methyl-1H-indol-3-yl)propyl)phosphonate (3e):
 White solid; mp: 118-119 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30(\mathrm{~d}, J=$ $37.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.65-7.75$ (m, 2H, Ph), 7.53-7.62 (m, 2H, Ph), 7.21 (s, 1H, $\mathrm{Ph}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.01(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, Ph), 3.76-4.04 (m, 5H, 2 $\mathrm{OCH}_{2}, \mathrm{CH}_{2} \mathrm{P}$), $2.63(\mathrm{dd}, J=20.3,15.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.04(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 169.23(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 135.17,133.69,131.97,128.79,124.50$, 123.61, 122.83, 120.70, $118.92(\mathrm{~s}, \mathrm{Ph}), 111.38(\mathrm{~s},=\mathrm{CH}), 61.74\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.60(\mathrm{~d}, J=6.6$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 58.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 34.89\left(\mathrm{~d}, J=141.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 27.47\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 21.67\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, $16.17\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.11\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.86$ (s); ESIHRMS calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 477.1550$, Found: 477.1548.

The mole ratio of $\mathbf{3 e}$ and $\mathbf{4 a}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

Diethyl (2-(1,3-dioxoisoindolin-2-yl)-2-(6-methoxy-1H-indol-3-yl)propyl)phosphonate (3f):

Faint yellow solid; mp: 129-130 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.23$ (s, 1H, N-H), 7.69-7.80 (m, 2H, Ph), 7.58-7.67 (m, 2H, Ph), 7.37 (d, $J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}), 6.76(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.63(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ph}), 3.92-4.10\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.81-3.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 3.74(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.64\left(\mathrm{dd}, J=20.7,15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.17\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.10\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.23(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 156.28,137.66,133.74$, $131.92,122.85,119.74,119.17(\mathrm{~s}, \mathrm{Ph}), 118.68(\mathrm{~s},=\mathrm{C}), 109.74(\mathrm{~s}, \mathrm{Ph}), 94.97(\mathrm{~s},=\mathrm{CH}), 61.70(\mathrm{~d}, J=6.7$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 61.55\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 58.06(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 55.51\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 34.85(\mathrm{~d}, J=$ $\left.141.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 27.63\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 16.21\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.14\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.80(\mathrm{~s})$; ESI-HRMS calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 493.1499$, Found: 493.1495.

The mole ratio of $\mathbf{3 f}$ and $\mathbf{4 a}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

Diethyl (2-(6-bromo-1H-indol-3-yl)-2-(1,3-dioxoisoindolin-2-yl)propyl)phosphonate (3g):

Yellow Solid; mp: 170-172 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d$-DMSO): $\delta 11.21$ (s, 1H, N-H), 7.75-7.86 (m, 4H, Ph), 7.54 (s, 1H, Ph), 7.46 (s, 1H, $=\mathrm{CH}$), 7.19 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 3.90-4.01(\mathrm{~m}, 2 \mathrm{H}$, OCH_{2}), $3.77-3.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.57\left(\mathrm{t}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.78(\mathrm{dd}$, $\left.J=19.8,15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.95(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR (101 MHz, d-DMSO): $\delta 168.99$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 138.01, 134.97, 131.62, 123.30, 123.22, $122.19,121.94(\mathrm{~s}, \mathrm{Ph}), 121.76(\mathrm{~s},=\mathrm{C}), 119.90,114.96(\mathrm{~s}, \mathrm{Ph}), 114.21(\mathrm{~s},=\mathrm{CH}), 61.65(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 61.23\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 57.94(\mathrm{~d}, J=5.0 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 34.15\left(\mathrm{~d}, J=138.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 28.20$ ($\mathrm{s}, \mathrm{CH}_{3}$), $16.51\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.24\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, d$-DMSO): δ 26.51 (s); ESI-HRMS calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 541.0498$, Found: 541.0496.

The mole ratio of $\mathbf{3 g}$ and $\mathbf{4 a}$ determined by crude ${ }^{31} \mathrm{P}-\mathrm{NMR}$

carboxylate (3h):

White solid; mp: $160-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.02$ (s, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 8.06$ (s, 1H, Ph), 7.73-7.80 (m, 2H, Ph), 7.62-7.70 (m, 3H, $\mathrm{Ph}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.33(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.01-$
$4.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.90-3.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.79-3.90(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{3}, \mathrm{CH}_{2} \mathrm{P}\right), 2.79\left(\mathrm{dd}, J=20.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.08\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.15,167.90(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 136.17,133.90$, 131.77, 127.80, 124.06 (s, Ph), 123.61 (s, =C), 122.93, 121.93, 120.67, 118.62 ($\mathrm{s}, \mathrm{Ph}), 114.11$ ($\mathrm{s},=\mathrm{CH})$, $61.79\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.67\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 57.99(\mathrm{~d}, J=3.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 51.92\left(\mathrm{~s}, \mathrm{OCH}_{3}\right)$, $35.04\left(\mathrm{~d}, J=142.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 27.39\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 16.21\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.08\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.26(\mathrm{~s})$; ESI-HRMS calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 521.1448$, Found: 521.1442.

The mole ratio of $\mathbf{3 h}$ and $\mathbf{4 a}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

White solid; mp: 125-126 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-$ H), 7.70-7.81 (m, 2H), 7.59-7.68 (m, 2H, Ph), 7.36 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph})$, $7.16(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.82-6.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph},=\mathrm{CH}), 3.84-4.16(\mathrm{~m}, 5 \mathrm{H}$, $\left.2 \mathrm{OCH}_{2}, \mathrm{CH}_{2} \mathrm{P}\right), 2.72\left(\mathrm{dd}, J=20.7,15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.32$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), $136.35,133.75,131.92,123.70,122.83,122.42(\mathrm{~s}$, $\mathrm{Ph}), 122.29$ (s, =C), 121.06, 120.17, 119.87 (s, Ph), 116.75 (s, =CH), $61.75\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $61.58\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 58.16(\mathrm{~d}, J=4.4 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 34.92\left(\mathrm{~d}, J=141.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 27.59\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, $16.36\left(\mathrm{~d}, J=0.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.22\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.11\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR (162 MHz , CDCl_{3}): $\delta 26.79$ (s); ESI-HRMS calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 477.1550$, Found: 477.1549.

The mole ratio of $\mathbf{3 i}$ and $\mathbf{4 a}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

Diethyl (2-(7-bromo-1H-indol-3-yl)-2-(1,3-dioxoisoindolin-2-yl)propyl)phosphonate (3j):

White solid; mp: 159-161 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-$ H), 7.73-7.83 (m, 2H, Ph), 7.59-7.71 (m, 2H, Ph), 7.48 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph})$, $7.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.25(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.87(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph})$, 3.94-4.10 (m, 4H, 2OCH $)$, 3.82-3.93 (m, 1H, CH2 P), $2.69(\mathrm{dd}, J=20.7,15.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 169.15$ (s, $\mathrm{C}=\mathrm{O}$), 135.36, 133.83, 131.84, 125.49, 124.47, 123.47 (s, Ph), $123.31(\mathrm{~s},=\mathrm{C}), 122.92,120.98,118.45(\mathrm{~s}, \mathrm{Ph}), 105.31(\mathrm{~s},=\mathrm{CH}), 61.75(\mathrm{~d}, J=$ 6.6 Hz, OCH_{2}), $61.62\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 57.97(\mathrm{~d}, J=4.8 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 34.89\left(\mathrm{~d}, J=141.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$, $27.53\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 16.19\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.11\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 26.33 (s); ESI-HRMS calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 541.0498$, Found: 541.0492.

The mole ratio of $\mathbf{3 j}$ and $\mathbf{4 a}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

Diethyl (2-(1,3-dioxoisoindolin-2-yl)-2-(7-nitro-1H-indol-3-yl)propyl)phosphonate (3k):

Yellow solid; mp: 178-179 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-$ H), $8.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.75-7.81(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ph}), 7.66-7.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.40(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.10(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ph}), 3.96-4.09\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.85\left(\mathrm{dd}, J=21.0,15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right)$, $2.69\left(\mathrm{dd}, J=21.0,15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.14\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.09(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 134.01$, $133.19,131.74,130.18,128.22,127.23,123.95(\mathrm{~s}, \mathrm{Ph}), 123.78(\mathrm{~s},=\mathrm{C}), 123.02,122.72(\mathrm{~s}, \mathrm{Ph}), 119.41$ (s, =CH), $61.78\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.71\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 57.51(\mathrm{~d}, J=4.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 34.97$ (d, $\left.J=142.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 27.77\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 16.19\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.13\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}): $\delta 25.81(\mathrm{~s}) ;$ ESI-HRMS calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 508.1244, Found: 508.1237.

The mole ratio of $\mathbf{3 k}$ and $\mathbf{4 a}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

Dimethyl (2-(1,3-dioxoisoindolin-2-yl)-2-(1H-indol-3-yl)propyl)phosphonate (3m):

Brown oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.63$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}$), 7.72-7.80 (m, 2H, Ph), 7.60-7.67 (m, 2H, Ph), 7.54 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.34$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ph}), 7.09-7.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph},=\mathrm{CH}), 6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 3.87-3.99(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 3.67\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.59\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.74$ (dd, $J=20.7,15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.27$ (s, $\mathrm{C}=\mathrm{O}$), $136.85,133.79,131.81,123.50,122.88,121.97(\mathrm{~s}, \mathrm{Ph}), 121.58(\mathrm{~s},=\mathrm{C}), 120.63,119.69,119.16(\mathrm{~s}, \mathrm{Ph})$, 111.78 (s, =CH), $58.04(\mathrm{~d}, J=3.8 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 52.42\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 52.30\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{3}\right)$, $34.10\left(\mathrm{~d}, J=141.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 27.47\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.41$ (s); ESI-HRMS calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 435.1080, Found: 435.1081.

The mole ratio of $\mathbf{3 m}$ and $\mathbf{4 m}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

Diisopropyl (2-(1,3-dioxoisoindolin-2-yl)-2-(1H-indol-3-yl)propyl)phosphonate (3n):

Brown oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.57$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}$), 7.71-7.79 (m, $2 \mathrm{H}, \mathrm{Ph}), 7.61-7.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.34(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.08-7.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph},=\mathrm{CH}), 6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 4.63-$ 4.74 (m, 2H, 2OCH), 3.89 (dd, $J=17.7,15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{P}$), 2.61 (dd, $J=$ 17.7, $15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{P}$), $2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15-1.25\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 169.28(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 136.86,133.66,132.04,123.50,122.80(\mathrm{~s}, \mathrm{Ph}), 122.16(\mathrm{~s},=\mathrm{C}), 121.89$, 120.42, 119.61, 119.29 (s, Ph), 111.73 ($\mathrm{s},=\mathrm{CH}), 70.35(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{OCH}), 70.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, OCH), $58.14(\mathrm{~d}, J=5.0 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 36.32\left(\mathrm{~d}, J=142.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 27.72\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 23.99(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 23.88\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 23.83\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 24.94(\mathrm{~s}) ;$ ESI-HRMS calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 491.1706$, Found: 491.1705.

The mole ratio of $\mathbf{3 n}$ and $\mathbf{4 n}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

Dibutyl (2-(1,3-dioxoisoindolin-2-yl)-2-(1H-indol-3-yl)propyl)phosphonate (30):

Brown oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.64$ (s, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}$), 7.71-7.77 (m, $2 \mathrm{H}, \mathrm{Ph}), 7.62-7.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.34(\mathrm{~d}, J=$ 8.1 Hz, 1H, Ph), 7.09-7.15 (m, 2H, Ph, =CH), $6.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph})$, 4.06-4.17 (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 3.95-4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.87-3.94(\mathrm{~m}, 2 \mathrm{H}$, OCH_{2}), $2.71\left(\mathrm{dd}, J=20.7,15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.47-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37-1.45$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.22-1.36\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 0.85\left(\mathrm{dd}, J=16.1,7.5 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 169.22(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 136.87,133.70,131.93,124.29,122.85,121.89(\mathrm{~s}, \mathrm{Ph}), 121.66(\mathrm{~s},=\mathrm{C})$, 120.63, 119.63, 119.18 (s, Ph), 111.77 (s, $=\mathrm{CH}), 65.51\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 65.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, OCH_{2}), $58.14(\mathrm{~d}, J=4.3 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 34.83\left(\mathrm{~d}, J=140.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 32.40\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 32.35(\mathrm{~d}$, $\left.J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 27.54\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 18.67\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 13.59\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR $(162 \mathrm{MHz}$, CDCl_{3}): $\delta 26.90$ (s); ESI-HRMS calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 519.2019$, Found: 519.2023.

The mole ratio of $\mathbf{3 o}$ and $\mathbf{4 0}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

Diethyl (2-(1,3-dioxoisoindolin-2-yl)-2-(3-methyl-1H-indol-2-yl)propyl)phosphonate (3p):

Yellow solid; mp: 182-183 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.18$ (s, 1 H , N-H), 7.68-7.75 (m, 2H, Ph), 7.59-7.65 (m, 2H, Ph), 7.37 (d, $J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ph}), 7.25$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.97$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 3.82-4.05\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.39(\mathrm{dd}, J=19.9,15.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $2.98\left(\mathrm{dd}, J=19.9,15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 168.52(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 134.56,134.07,131.66,129.62(\mathrm{~s}, \mathrm{Ph}), 123.72(\mathrm{~s},=\mathrm{C}-\mathrm{N}), 123.11,121.72$, $119.14,118.15,111.10(\mathrm{~s}, \mathrm{Ph}), 106.12$ (s, = CH), $62.14\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, OCH_{2}), $58.51(\mathrm{~s}, \mathrm{~N}-\mathrm{C}), 35.23\left(\mathrm{~d}, J=139.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 26.58\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 16.25\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $16.10\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 9.36\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.03(\mathrm{~s}) ;$ ESI-HRMS calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 477.1550$, Found: 477.1558.

Diethyl (2-(1,3-dioxoisoindolin-2-yl)-2-(3-methyl-1H-indol-1-yl)propyl)phosphonate (3p'):

Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71-7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.63-7.69(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ph}), 7.52$ ($\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}$), 7.20-7.27 (m, 2H, Ph, $=\mathrm{CH}$), 6.98-7.10 $(\mathrm{m}, 2 \mathrm{H}, \mathrm{Ph}), 3.76-4.03\left(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{OCH}_{2}, \mathrm{CH}_{2} \mathrm{P}\right), 3.08(\mathrm{dd}, J=21.3,14.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{P}$), $2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.06(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, $134.22,131.36,128.66,123.56,123.36(\mathrm{~s}, \mathrm{Ph}), 122.80(\mathrm{~s},=\mathrm{C}), 121.87,119.57,119.21,110.95(\mathrm{~s}, \mathrm{Ph})$, 110.39 (s, =CH), $73.21(\mathrm{~s}, \mathrm{~N}-\mathrm{C}), 62.10\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.94\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 35.73(\mathrm{~d}, J$ $\left.=143.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 26.51\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 16.15\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.01\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 9.71(\mathrm{~s}$, CH_{3}); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.38(\mathrm{~s})$; ESI-HRMS calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 477.1550, Found: 477.1551.

General procedure for the preparation of 6 and 4:

The $7.2 \mu \mathrm{~L} \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.056 \mathrm{mmol})$ and 28 mg pyrrole $(0.42 \mathrm{mmol})$ in an oven-dried Schlenk tube was dissolved in 2 mL of freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under nitrogen. Dialkyl α-diazophosphonates 1 (0.28 mmol) was diluted with 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was drawn into a gastight syringe. It was then added to the reaction mixture dropwise over a period of 1.5 h with the help of a syringe pump. After the addition was complete, the reaction mixture was stirred for another 2 hour at $25^{\circ} \mathrm{C}$. The solvent was then removed under reduced pressure and the crude residue was purified by silica gel chromatography with the eluent $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 15: 1(\mathrm{v}: \mathrm{v})\right]$ to give the corresponding products $\mathbf{6}$ and 4.

Diethyl (2-(1,3-dioxoisoindolin-2-yl)-2-(1H-pyrrol-2-yl)propyl)phosphonate (6a):
 White solid; mp: 111-112 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-$ $\mathrm{H})$, 7.74-7.87 (m, 2H, Ph), 7.64-7.72 (m, 2H, Ph), $6.80(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.20(\mathrm{~s}$, $1 \mathrm{H},=\mathrm{CH}), 6.11-6.19(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 3.92-4.11\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.21-3.44(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $2.91\left(\mathrm{dd}, J=19.9,15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21(\mathrm{t}, J$
$\left.=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 169.25(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, $134.40(\mathrm{~d}, J=11.4 \mathrm{~Hz},=\mathrm{C}), 133.92$, 131.92, $122.92(\mathrm{~s}, \mathrm{Ph}), 118.24,107.45,105.92(\mathrm{~s},=\mathrm{CH}), 61.90(\mathrm{~d}$, $\left.J=2.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.84\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 56.95(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 36.21(\mathrm{~d}, J=137.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 26.90\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.23\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.09\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}): $\delta 26.74$ (s); ESI-HRMS calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 413.1237$, Found : 413.1229.

The mole ratio of $\mathbf{6 a}$ and $\mathbf{4 a}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

Diethyl (2-(1,3-dioxoisoindolin-2-yl)-4-methyl-2-(1H-pyrrol-2-yl)pentyl)phosphonate (6b):

White solid; mp: 119-120 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H})$, 7.73-7.83 (m, 2H, Ph), 7.63-7.69 (m, 2H, Ph), $6.72(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.15(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CH}), 6.12(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 3.99-4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.83-3.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.58\left(\mathrm{dd}, J=18.8,15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.61-2.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{P}\right), 2.40(\mathrm{dd}$, $\left.J=13.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.78-1.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.17\left(\mathrm{dd}, J=15.1,7.3 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.87(\mathrm{~d}, J$ $\left.=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.83\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 169.06(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, $133.85(\mathrm{~s}, \mathrm{Ph}), 133.14(\mathrm{~s},=\mathrm{C}), 131.85,122.98(\mathrm{~s}, \mathrm{Ph}), 117.45,107.71,105.83(\mathrm{~s},=\mathrm{CH}), 62.16(\mathrm{~d}, J=$ $\left.6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.54\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 60.77(\mathrm{~d}, J=4.9 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 46.59\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $34.62\left(\mathrm{~d}, J=141.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 24.57(\mathrm{~s}, \mathrm{CH}), 24.45\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 24.38\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 16.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, CH_{3}); ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}): $\delta 28.16(\mathrm{~s})$; ESI-HRMS calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 455.1706, Found : 455.1714.

cy-2014-02-21-1		

The mole ratio of $\mathbf{6 b}$ and $\mathbf{4 b}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

Diethyl (2-(1,3-dioxoisoindolin-2-yl)-3-phenyl-2-(1H-pyrrol-2-yl)propyl)phosphonate (6c):

White solid; mp: 152-154 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H})$, 7.70-7.77 (m, 2H, Ph), 7.64-7.70 (m, 2H, Ph), 7.11-7.23 (m, 3H, Ph), 6.96 (d, J $=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.71(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.17(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.13(\mathrm{~s}, 1 \mathrm{H}$,
$=\mathrm{CH}), 4.22\left(\mathrm{dd}, J=13.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.95-4.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.76-3.91$ (m, 2H, OCH 2), $3.63\left(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35\left(\mathrm{dd}, J=19.4,15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.61(\mathrm{dd}, J=$ $\left.19.4,15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 1.20\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.86(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 135.73(\mathrm{~s}, \mathrm{Ph}), 133.88(\mathrm{~s}, \mathrm{Ph}), 133.29(\mathrm{~d}, J=9.0 \mathrm{~Hz},=\mathrm{C}), 131.76$, $130.78,128.13,127.09,123.04(\mathrm{~s}, \mathrm{Ph}), 117.35,108.00,105.85(\mathrm{~s},=\mathrm{CH}), 62.36\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $61.23\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.13(\mathrm{~d}, J=4.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 43.52\left(\mathrm{~d}, J=10.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 33.72(\mathrm{~d}, J=$ $\left.142.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 16.32\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.12\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.81$ (s); ESI-HRMS calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 489.1550$, Found : 489.1546.

The mole ratio of $\mathbf{6 c}$ and $\mathbf{4 c}$ determined by crude ${ }^{31} \mathrm{P}$ NMR
4-(3-(diethoxyphosphoryl)-2-(1,3-dioxoisoindolin-2-yl)-2-(1H-pyrrol-2-yl)propyl)phenyl acetate (6d):

White solid; mp: 153-154 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.17$ (s, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}$), 7.72-7.80 (m, 2H, Ph), 7.63-7.70 (m, 2H, Ph), 6.83-6.99 (m, 4H, Ph), 6.71 (s, $1 \mathrm{H},=\mathrm{CH}), 6.15(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.09(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.30(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.95-4.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.79-3.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.68(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.17\left(\mathrm{t}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.72\left(\mathrm{t}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19(\mathrm{t}, J$ $\left.=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.09\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.33,168.83(\mathrm{~s}$, $\mathrm{C}=\mathrm{O}$), 149.72, 133.93, 133.38, 133.06 (s, Ph), 132.96 ($\mathrm{s},=\mathrm{C}$), 131.79, 123.07, 121.07 (s, Ph), 117.41, $108.12,106.34(\mathrm{~s},=\mathrm{CH}), 62.32\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.40\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.20(\mathrm{~d}, J=4.1$ $\mathrm{Hz}, \mathrm{N}-\mathrm{C}), 42.82\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 32.78\left(\mathrm{~d}, J=142.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 21.16\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 16.28(\mathrm{~d}, J=6.3$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 16.10\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.34$ (s); ESI-HRMS calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}: 547.1605$, Found : 547.1606.

The mole ratio of $\mathbf{6 d}$ and $\mathbf{4 d}$ ' determined by crude ${ }^{31} \mathrm{P}$ NMR

Diethyl (2,6-bis(1,3-dioxoisoindolin-2-yl)-2-(1H-pyrrol-2-yl)hexyl)phosphonate (6e):

White solid; mp: 101-102 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.79$ (s, 1 H , $\mathrm{N}-\mathrm{H}), 7.78-7.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.62-7.77(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 6.71(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH})$, $6.10(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}), 3.84-4.10\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.65(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $3.35\left(\mathrm{dd}, J=19.5,15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.75-2.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.66-1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33-1.44(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.19\left(\mathrm{t}, J=7.0,3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left(\mathrm{t}, J=7.0,3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 168.97,168.38(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 133.88(\mathrm{~s}, \mathrm{Ph}), 132.30(\mathrm{~d}, J=9.5 \mathrm{~Hz},=\mathrm{C}), 132.13$, 131.84, 123.18, $122.98(\mathrm{~s}, \mathrm{Ph}), 117.75,107.66,106.16(\mathrm{~s},=\mathrm{CH}), 62.08\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.82(\mathrm{~d}$, $\left.J=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 60.56(\mathrm{~d}, J=3.9 \mathrm{~Hz}, \mathrm{~N}-\mathrm{C}), 37.78\left(\mathrm{~d}, J=10.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 37.67\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 33.38(\mathrm{~d}, J$ $\left.=140.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 28.53\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 21.99\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 16.25\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.13(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, CH_{3}); ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}): $\delta 27.77$ (s); ESI-HRMS calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{P}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 600.1870, Found: 600.1865.

The mole ratio of $\mathbf{6 e}$ and $\mathbf{4 e} \mathbf{e}^{\prime}$ determined by crude ${ }^{31} \mathrm{P}$ NMR

X-ray crystal structure of 3a and 6a:

Single Crystal X-Ray Analysis 3a (CCDC 982309) and 6a (CCDC 992526) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk.

X-ray crystal structure of 3a
Table 1. Crystal data and structure refinement for R140114A1.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

$$
\begin{array}{rrr}
\mathrm{a}=14.067(3) \mathrm{A} & \alpha=90^{\circ} \\
\mathrm{b}=17.217(3) \mathrm{A} & \beta=90^{\circ}
\end{array}
$$

$$
\mathrm{c}=18.001(4) \mathrm{A} \quad \gamma=90^{\circ}
$$

Volume	$4359.7(15) \mathrm{A}^{\wedge} 3$
Z, Calculated density	$8,1.342 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.164 \mathrm{~mm}^{\wedge}-1$
$\mathrm{~F}(000)$	1856
Crystal size	$0.20 \times 0.18 \times 0.12 \mathrm{~mm}$
Theta range for data collection	2.19 to 25.02°
Limiting indices	$-16<=\mathrm{h}<=16,-20<=\mathrm{k}<=20,-21<=1<=21$
Reflections collected / unique	$33067 / 3797[\mathrm{R}(\mathrm{int})=0.1935]$
Completeness to theta $=25.01$	98.7%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9806 and 0.9680
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	$3797 / 103 / 312$
Goodness-of-fit on F^2	1.025
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0992$, wR2 $=0.2308$
R indices (all data)	$\mathrm{R} 1=0.1314$, wR2 $=0.2509$
Extinction coefficient	$0.0096(15)$
Largest diff. peak and hole	0.301 and -0.416 e.A^-3

X-ray crystal structure of $\mathbf{6 a}$
Table 1. Crystal data and structure refinement for SA.

Identification code
sa
Empirical formula
$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}$
Formula weight 390.36

Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

$$
\begin{array}{ll}
\mathrm{a}=12.744(3) \mathrm{A} & \alpha=90^{\circ} \\
\mathrm{b}=7.7256(15) \mathrm{A} & \beta=109.09(3)^{\circ} \\
\mathrm{c}=20.770(4) \mathrm{A} & \gamma=90^{\circ}
\end{array}
$$

1932.4(7) A^3

Z, Calculated density
Absorption coefficient
$F(000)$ 824

Crystal size	$0.20 \times 0.18 \times 0.12 \mathrm{~mm}$
Theta range for data collection	1.69 to 28.04°
Limiting indices	$-16<=\mathrm{h}<=16,-10<=\mathrm{k}<=10,-16<=1<=27$
Reflections collected / unique	$4619 / 4619[\mathrm{R}(\mathrm{int})=0.0000]$
Completeness to theta $=25.01$	98.9%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9793 and 0.9659
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	$4619 / 0 / 254$
Goodness-of-fit on F^2	1.878
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.1972, \mathrm{wR} 2=0.5345$
R indices (all data)	$\mathrm{R} 1=0.2171, \mathrm{wR} 2=0.5409$
Extinction coefficient	$0.0000(10)$
Largest diff. peak and hole	1.148 and -1.073 e. $\mathrm{A}^{\wedge}-3$

