Supporting Information

Organic–inorganic hybrid polyoxometalate and its graphene oxide-Fe₃O₄

nanocomposite, synthesis, characterization and their applications as nanocatalysts for the

Knoevenagel condensation and the synthesis of 2,3-dihydroquinazolin-4(1H)-ones

Roushan Khoshnavazi*, Liela Bahrami, Forugh Havasi Department of chemistry, University of KurdistanP.O. Box 66135-416, Sanandaj, Iran E-mail address :<u>r.khoshnavazi@uok.ac.ir</u> or <u>khoshnavazi@yahoo.com</u>

¹H NMR and ¹³C NMR spectra of the catalytic synthesized

compounds

NMR Spectra of Knoevenagel Products

2-Benzylidene-malononitrile (table 2, entry 1):Mp: 82-83 °C [59]; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.1 (t, J = 8.0 Hz, 2H), 7.6 (t, J = 8.0 Hz, 1H), 7.8 (d, J = 8.20 Hz, 2H), 8 (s, 1H); ¹³C NMR (100 MHz, CDCl₃); δ = 159.3, 134.2, 133.1, 130.7, 117.2, 117.2, 86.9.

2-(4-methoxybenzylidene)malononitrile (table 2, entry 2):Mp:112-114 °C [59]; ¹H-NMR (400MHz, CDCl₃): δ (ppm):7.91 (d, *J* = 10.5 Hz, 2H), 7.65 (s, 1H), 7.01 (d, *J* = 9.0 Hz, 2H), 3.91 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 158.9, 154.4, 136.4, 128.9, 121.2, 120.2, 114.3, 112.9, 111.5, 81.5, 55.9.

2-(4-nitrobenzylidene)malononitrile (table 2, entry 4):Mp:158-159 °C [59]; ¹H-NMR (400MHz, CDCl₃): δ (ppm): 8.41 (d, *J*=8.84, 2H), 8.10 (d,*J*=8.84, 2H), 7.90 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 156.8, 150.4, 135.8, 131.3, 124.6, 112.6, 111.5, 87.5.

2-(2-chlorobenzylidene)malononitrile (table 2, entry 5):Mp:79-82 °C [61]; ¹H-NMR (400MHz, CDCl₃): δ (ppm): 7.80 (d, *J*=7.84, 2H), 7.74 (s, 1H), 7.71 (d, *J*=7.84, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm):158.4, 133.1, 131.8, 129.9, 129.6, 113.4, 112.3, 83.5.

2-(4-chlorobenzylidene)malononitrile (table 2, entry 6):Mp:162-164 °C [61]; ¹H-NMR (400MHz, CDCl₃): δ (ppm):7.78(m, 3H), 7.69(d, *J*=6.8 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm):159.6, 134.2, 132.9, 131.1, 130.8, 114.6, 113.5, 84.6.

Ethyl 2-cyano-3-(3-nitrophenyl)acrylate(table 2, entry 8):Mp:130-132 °C [63]; ¹H-NMR (400MHz, CDCl₃): δ (ppm):1.44 (t, J = 8.00 Hz, 3H), 4.44 (q, J = 8.10 Hz, 2H), 7.28 (d,J = 8.20 Hz, 1H), 7.76 (t,J = 8.25 Hz, 1H), 8.33 (s, 1H), 8.43(d,J = 8.78 Hz, 1H), 8.72 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm):160.9, 151.2, 148.2, 134.8, 132.4, 130.0, 126.4, 126.2, 113.9, 106.3, 62.6, 13.5.

Ethyl 2-cyano-3-phenylacrylate (table 2, entry 9):Mp:50-52 °C [59]; ¹H-NMR (400MHz, CDCl₃): δ (ppm):1.49(t, *J*= 6.8 Hz, 3H) 4.16(q, *J*= 6.8 Hz, 2H) 6.99-7.01 (m, 3H) 7.65 (d, *J*=8.4Hz, 1H) 7.66-7.90 (m, 2H);¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 162.5, 155.1, 155.0, 133.3, 131.4, 131.1, 129.3, 115.5, 103.0, 62.7, 14.2.

Ethyl 3-(4-chlorophenyl)-2-cyanoacrylate (table 2, entry 12):Mp:87-89 °C [64]; ¹H-NMR (400MHz, CDCl₃): δ (ppm):8.20 (s, 1H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 4.39 (q, *J* = 7.2 Hz,2H), 1.40 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 162.2, 153.3, 139.5,132.1, 129.9, 129.6, 115.2, 103.6, 62.8, 14.1.

NMR Spectra of 2,3-dihydroquinazolin-4(1H)-one Products

2-Phenyl-2,3-dihydroquinazolin-4(1*H***)-one(table 4, entry 1):**Mp:223-224 °C [66]; ¹H-NMR (400 MHz, DMSO-d6): δ (ppm):8.29 (s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.51 (d, J = 7.1 Hz, 2H), 7.41-7.35 (m, 3H), 7.26 (t, J = 7.8 Hz, 1H), 7.11 (s, 1H), 6.76 (d, J = 7.8 Hz, 1H), 6.69 (t, J = 7.8 Hz, 1H), 5.76 (s, 1H); ¹³C-NMR (100 MHz, DMSO-d6) δ (ppm):163.6, 147.8, 141.6, 133.3, 128.4, 128.3, 127.3, 126.8, 117.1, 114.9, 114.4, 66.5.

2-(4-Bromophenyl)-2,3-dihydoquinazolin-4(1H)-one (table 4, entry 2):Mp:197-200 °C [38]; ¹H-NMR (400 MHz, DMSO-d6): δ (ppm):8.17-8.13 (m, 1H), 7.80-7.78 (m, 1H), 7.63-7.60 (m, 3H), 7.47-7.45 (m, 2H), 7.28-7.24 (m, 1H), 6.74 (d, *J*= 8.4, 1H), 6.71-6.68 (m, 1H), 5.76 (s, 1H); ¹³C-NMR (100 MHz, DMSO-d6) δ (ppm):164.3, 154.4, 148.1, 133.9, 132.3, 130.2, 130.0, 127.8, 126.5, 118.1, 117.8, 114.9, 110.3, 61.3.

2-(4-Chlorophenyl)-2,3-dihydroquinazolin-4(1*H***)-one(table 4, entry 4):Mp:202-203 °C [66]; ¹H-NMR (400 MHz, DMSO-d6): \delta (ppm):8.33 (s, 1H), 7.62 (dd, J = 8.0 Hz, J = 1.1 Hz, 1H), 7.52 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 7.27-7.23 (m, 1H), 7.14 (s, 1H), 6.76 (dd, J = 8.0 Hz, J = 1.1 Hz,1H), 6.70-6.66 (m, 1H), 5.77 (s, 1H); ¹³C-NMR (100 MHz, DMSO-d6) \delta (ppm):163.4, 147.6, 140.6, 133.3, 132.9, 128.7, 128.2, 127.3, 117.2, 114.9, 114.4, 65.7.**

2-(2-Chlorophenyl)-2,3-dihydroquinazolin-4(1*H***)-one (table 4, entry 5): Mp: 228-230 °C [67]; ¹H-NMR (400 MHz, DMSO-d6): δ (ppm):8.40 (s, 1H), 7.62 (d,** *J* **= 7.6 Hz, 1H), 7.53 (s, 1H), 7.44-7.41 (m, 3H), 7.27 (t,** *J* **= 7.6 Hz, 1H), 7.21 (s, 1H), 6.77 (d,** *J* **= 7.6 Hz, 1H), 6.70 (t,** *J* **= 7.6 Hz, 1H), 5.78 (s, 1H); ¹³C-NMR (100 MHz, DMSO-d6) δ (ppm):164.1, 148.3, 141.9, 137.9, 133.6, 129.5, 128.7, 127.8, 127.6, 124.3, 117.6, 115.2, 114.8, 66.9.**

2-(2-Hydroxy-4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one(table 4, entry 6): Mp:262-263 °C [68]; ¹H-NMR (400 MHz, DMSO-d6): δ (ppm):9.35 (s, 1H), 7.68 (d, J = 6.8 Hz, 1H), 7.57 (s, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.15-7.13 (m, 1H), 6.98 (s, 1H), 6.68-6.66 (m, 2H), 6.38 (s, 1H), 6.29-6.27 (m, 1H), 5.96 (s, 1H), 3.65 (s, 3H); ¹³C-NMR (100 MHz, DMSO-d6) δ (ppm):163.5, 159.2, 147.7, 143.3, 133.3, 129.4, 127.3, 118.9, 117.0, 114.9, 114.3, 113.6, 112.5, 66.2, 55.0.

2-(3-Nitrophenyl)-2,3-dihydoquinazolin-4(1H)-one(table 4, entry 7): Mp:180-182 °C [67]; ¹H-NMR (400 MHz, DMSO-d6): δ (ppm):8.25 (s, 1H), 8.09 (d, *J*= 7.2, 1H), 7.89 (d, *J*= 6.4, 1H), 7.83-7.80 (m, 1H), 7.70-7.63 (m, 2H), 7.30 (t, *J*= 7.2, 1H), 7.04 (s, 1H), 6.80-6.72 (m, 2H), 6.36 (s, 1H); ¹³C-NMR (100 MHz, DMSO-d6) δ (ppm):163.2, 149.3, 147.4, 147.2, 133.5, 128.0, 127.3, 123.5, 117.4, 114.8, 114.5, 65.2.

2-(4-Methoxyphenyl)-2,3-dihydoquinazolin-4(1*H***)-one(table 4, entry 9): Mp:182-183 °C [68]; ¹H-NMR (400 MHz, DMSO-d6): δ (ppm):8.20 (s, 1H), 7.64-7.62 (d,** *J***= 6, 1H), 7.28-7.24 (t,** *J***= 6, 1H), 7.15 (d,** *J***= 1.6, 1H), 7.04-6.97 (m, 2H), 6.95 (s, 1H), 6.78-6.76 (d,** *J***= 8, 2H), 5.71 (s, 1H), 3.77 (s, 3H); ¹³C-NMR (100 MHz, DMSO-d6) δ (ppm):163.6, 159.4, 147.9, 133.4, 133.2, 128.1, 127.3, 117.0, 114.9, 114.3, 113.6, 66.2, 55.1.**

2-(4-Methylphenyl)-2,3-dihydroquinazolin-4(1*H***)-one (table 4, entry 10): Mp: 225-226 °C [35]; ¹H-NMR (400 MHz, DMSO-d6): δ (ppm):8.22 (s, 1H), 7.62 (dd,** *J* **= 8.0 Hz,** *J* **= 1.3 Hz, 1H) 7.38 (d,** *J* **= 7.8 Hz, 2H), 7.25-7.21 (m, 1H), 7.20 (d,** *J* **= 7.8 Hz, 2H), 7.04 (s, 1H), 6.74 (d,** *J* **= 8.0 Hz, 1H), 6.68-6.64 (m, 1H), 5.71 (s, 1H), 2.29 (s, 3H); ¹³C-NMR (100 MHz, DMSO-d6) δ (ppm):164.1, 148.4, 139.1, 138.2, 133.7, 129.3, 127.8, 127.2, 117.5, 115.4, 114.9, 66.8, 21.2.**

Fig. S1 TG analysis of Graphene Oxide.

Fig. S2 XRD analysis of Graphene Oxide.

The common methods such as titration with Hammett indicators, temperature programmed desorption of adsorbed molecules such as ammonia or pyridine, adsorption microcalorimetry, NMR spectroscopy have been employed to describe the acidity of POMs in the solid state both qualitatively and quantitatively [43]. Potentiometric titration with n-butylamine let us to estimate the number of acid sites and their distribution [22]. The titration curves show that HybPOM and Go/Fe₃O₄/HybPOM with the initial electrode potential -165.9 and -73.8 mV are classified as very weak and weak acid, respectively. Difference in the acid strength of HybPOM and Go/Fe₃O₄/HybPOM is attributed to the total number of free NH₂ groups on them. For Go/Fe₃O₄/ HybPOM some of NH₂ groups are involved in the bonding with Go/Fe₃O₄ nanoparticle."

Fig. S3 The acid-base titration curves of HybPOM (a) and Go/Fe₃O₄/HybPOM (b)