Supporting Information

Han Han^a, Darshana Wickramaratne^b, Qing Huang^a, Jianxing Dai^a, Tongwei Li^c, Hui Wang^{c, *}, Wei Zhang^{a,*} and Ping Huai^a

^aShanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
^bMaterials Department, University of California, Santa Barbara, CA 93106, USA
^cSchool of Physics and Engineering, Henan University of Science and Technology, Luoyang 471003, China

Correspondence and requests for materials should be addressed to Wei Zhang (zhangwei@sinap.ac.cn) and Hui Wang (nkxirainbow@gmail.com).

Contents

Part 1. The calculated structural and mechanical parameters of Cr₂AlC compared with experimental data.

Part 2. The defect formation energies of interstitials with various positions.

Part 3. The detailed data for defect formation energies in Cr₂AlC.

Part 4. The projected density of states of Cr₂AlC for Cr-3d and C-2p orbitals.

Part 5. The detailed data for defect formation energies of Cr₂AlC with different magnetic structures.

Part 1. The calculated structural and mechanical parameters of Cr₂AlC compared with experimental data.

Table S1. Lattice parameters (in Å), unit cell volumes (in Å³), and the elastic properties (bulk modulus *B*, shear modulus *G*, and Young's modulus *E* (in GPa) of Cr₂AlC studied herein. Also included are previous determinations of the same parameters measured by experiments (Exp.). The NM, NM+U, AFM, and AFM+U represent the results obtained by non-magnetic PBE calculation, PBE+U calculation, calculation with antiferromagnetic spin-ordering, and PBE+U calculation with antiferromagnetic spin-ordering. The magnetic ordering is in-AFM1.

	NM	NM+U	AFM	AFM+U	Exp.
а	2.841	2.841	2.849	2.864	2.858 ^a , 2.86 ^b , 2.863 ^c , 2.854 ^d , 2.848 ^e
С	12.683	12.683	12.697	12.792	12.808 ^a ,12.82 ^b ,12.814 ^c , 12.82 ^d ,12.72 ^e
V	88.653	88.653	89.252	90.869	90.602 °, 90.814 b
В	196.3406	196.3406	179.132	155.008	139 ^f ,165 ^g , 138 ^h
G	117.306	117.306	117.405	113.688	105 ^h
Ε	293.473	293.473	289.064	274.062	245 ^h

^a See Ref.[1].	^e See Ref.[5].
^b See Ref.[2].	^f See Ref.[6].
°See Ref.[3].	^g See Ref.[7].
^d See Ref.[4].	^h See Ref.[8].

Part 2. The defect formation energies of interstitials with various positions.

Table S2. Defect formation energies (E_{def} , in eV) of Cr_i , Al_i , and C_i in Cr_2AlC . The interstitials are much more stable between Cr-Al layers than between Cr-C layers. The Al_i is unstable between Cr-C layers.

Positions	Cr _i	Al _i	C _i
Cr-Al	4.34	4.49	2.18
Cr-C	6.22	-	4.69

Part 3. The detailed data for defect formation energies in Cr₂AlC.

Table S3. Defect formation energies (E_{def} , in eV) of on-lattice defects in Cr₂AlC. The results of E_{def} for the most studied Ti₃SiC₂ calculated by previous work ^[9] are also listed for comparison. All the Defect formation energies were calculated with the chemical potentials of atoms assumed to be the bulk crystals of elementary substance.

Defect	NM	AFM+U	Ti ₃ SiC ₂ ^[9]	
V _{Cr}	1.95	1.16	5.5	
V _{Al}	2.03	2.47	2.1	
V _C	0.97	0.81	2.1	
Cr _i	4.34	5.42	3.6	
Al _i	4.49	4.16	2.1	
C _i	2.18	2.24	0.9	
Cr _{Al}	1.34	2.13	1.8	
Al _{Cr}	0.93	-0.23	3.2	
Cr _C	5.32	6.47	8.0	
C _{Cr}	4.16	2.92	5.9	
Al_C	4.83	4.66	3.4	
C _{Al}	15.83	15.65	3.2	

Part 4. The projected density of states of Cr₂AlC for Cr-3d and C-2p orbitals.

Figure S1. The projected density of states (PDOS) of Cr_2AlC for Cr-d and C-p orbitals. The projection method is the same to Fig. 6, but without the rotation. In other words, the dz²-orbital is now aligned with the cell axis. It can be seen the dz²-orbital spin splitting can not be obviously observed without rotation.

Part 5. The detailed data for defect formation energies of Cr₂AlC with different magnetic structures.

Defect	NM	(a)	(b)	(c)	(d)	(e)	(f)
Vcr	1 95	1 76	2.03	2.01	2.09	2.08	1 95
VAL	2.03	1.73	2.03	2.24	2.52	2.86	1.50
V	0.97	0.71	1.27	1.26	1.37	1.14	0.93
Cri	4.34	4.21	4.29	4.29	4.36	4.29	3.80
Ali	4.49	4.28	4.31	4.44	4.85	4.39	4.40
Ci	2.18	1.97	2.19	2.18	2.26	2.21	2.14
Cr _{Al}	1.34	0.94	1.12	1.19	1.22	1.2	0.72
Al _{Cr}	0.93	0.64	0.92	1.01	1.14	0.92	0.85
Cr _C	5.32	5.16	3.71	3.75	3.85	5.35	3.38
C _{Cr}	4.16	3.99	4.24	4.26	4.3	4.24	3.76
Al_C	4.83	4.58	4.77	4.92	4.69	4.87	4.26
C _{Al}	15.83	15.57	15.76	15.91	15.68	15.86	15.25

Table S4. Defect formation energies (E_{def} in eV, U= 0 eV) of on-lattice defects in Cr₂AlC with different magnetic structures illustrated in Fig. S2.

References for Supporting Information:

- 1 M. Baben, L. Shang, J. Emmerlich and J. M. Schneider, *Acta Materialia*, 2012, **60**, 4810-4818.
- 2 W. Jeitschko, H. Nowotny and F. Benesovsky, *Monatshefte für Chemie und verwandte Teile anderer Wissenschaften*, **94**, 672-676.
- 3 W. Tian, P. Wang, G. Zhang, Y. Kan, Y. Li and D. Yan, *Scripta Materialia*, 2006, **54**, 841-846.
- 4 J. C. Schuster, H. Nowotny and C. Vaccaro, *Journal of Solid State Chemistry*, 1980, **32**, 213-219.
- 5 Z. Sun, R. Ahuja, S. Li and J. M. Schneider, *Applied Physics Letters*, 2003, 83, 899-901.
- 6 S. E. Lofland, J. D. Hettinger, K. Harrell, P. Finkel, S. Gupta, M. W. Barsoum and G. Hug, *Applied Physics Letters*, 2004, **84**, 508-510.
- 7 B. Manoun, R. P. Gulve, S. K. Saxena, S. Gupta, M. W. Barsoum and C. S. Zha, *Physical Review B*, 2006, **73**, 024110.
- ⁸ J. D. Hettinger, S. E. Lofland, P. Finkel, T. Meehan, J. Palma, K. Harrell, S. Gupta, A. Ganguly, T. El-Raghy and M. W. Barsoum, *Physical Review B*, 2005, **72**, 115120.
- 9 H. Zhang, J. Wang, J. Wang, Y. Zhou, S. Peng and X. Long, *Journal of Nanomaterials*, 2013, **2013**, 5.