# Supplementary information for

# Nanocrystalline MnO<sub>2</sub> on Activated Carbon Fiber for

## **Catalytic Formaldehyde Removal**

Zijian Dai <sup>a</sup>, Xiaowei Yu <sup>b</sup>, Chen Huang <sup>a</sup>, Meng Li <sup>a</sup>, Jiafei Su <sup>b</sup>, Yaping Guo <sup>b</sup>, He Xu<sup>b</sup>, Qinfei Ke, <sup>\*, b, a</sup>

a Key Laboratory of Textile Science &Technology (College of Textiles, Donghua University), Ministry of Education, Shanghai 201620, P. R. China. E-mail address: <u>kqf@dhu.edu.cn</u>

b Environmental Materials Research Center, Shanghai Normal University, Shanghai 200234, P. R. China

| Catalyst                             | Concentration | Temperature         | Test method                                                                                                             | Performance                                                                                              | Ref. |
|--------------------------------------|---------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|
| Pt/TiO <sub>2</sub><br>hollow chains | 260 ± 5 ppm   | Room<br>temperature | Organic glass box<br>reactor(4.4 L)<br>catalyst weight:<br>0.1 g                                                        | HCHO decreased<br>to 17.2 ppm after<br>60 min with<br>R0.5Pt/TiO <sub>2</sub>                            | 29   |
| Eu/CeO <sub>2</sub>                  | 500 ppm       | 20-350 °C           | Tests were<br>performed in a<br>fixed-bed reactor<br>GHSV =30,000<br>mL $\cdot$ h <sup>-1</sup> $\cdot$ g <sup>-1</sup> | The complete<br>HCHO oxidation<br>of 4% Eu/CeO <sub>2</sub><br>nanosheets can<br>be obtained at<br>120°C | 30   |
|                                      |               |                     | Tests were                                                                                                              | 100% HCHO                                                                                                |      |

Table S1. Summary of catalytic oxidation for formaldehyde removal at ambienttemperature in recent literature.

| manganese<br>oxides with<br>different crystal<br>structures       | 170 ppm  | 50-200 °C                      | performed in a<br>fixed-bed quartz<br>flow reactor<br>(i.d. = 4 mm)<br>catalyst: 60 mg<br>GHSV =100 000<br>mL ( $g_{cat}$ h) <sup>-1</sup> | conversion<br>occurs at 80 °C<br>for $\delta$ -MnO <sub>2</sub> , 125<br>°C, 200 °C, and<br>150 °C for $\alpha$ -<br>MnO <sub>2</sub> , $\beta$ -MnO <sub>2</sub><br>and $\gamma$ -MnO <sub>2</sub> | 6  |
|-------------------------------------------------------------------|----------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Pt/ceramics                                                       | 140 ppm  | Room<br>temperature<br>(25 °C) | Organic glass box<br>reactor (6 L)<br>catalyst weight: 21<br>g (300 mesh)                                                                  | Best<br>performance<br>with 0.013 wt%<br>Pt loaded at<br>Pt/HC catalysts.                                                                                                                           | 31 |
| Pt/MnO <sub>2</sub>                                               | 460 ppm  | 20-200 °C                      | Test in fixed-bed<br>reactor;<br>catalyst: 0.1 g;<br>GHSV: 20 000 h <sup>-1</sup>                                                          | ~30%<br>conversion of<br>HCHO over 0.5-<br>1 wt%                                                                                                                                                    | 27 |
| Au <sub>0.5</sub> Pt <sub>0.5</sub> /MnO <sub>2</sub> /<br>cotton | 460 ppm; | 20-200 °C                      | Fixed-bed reactor;<br>(length = 500 mm,<br>diameter = 4 mm)<br>GHSV:20 000 h <sup>-1</sup>                                                 | Pt/MnO <sub>2</sub> 20 °C<br>~30% HCHO<br>conversion over<br>$(Au_{0.5}Pt_{0.5}/MnO_2)(20$<br>wt%)/cotton at<br>40 °C                                                                               | 32 |
| MnO <sub>2</sub> /cellulose                                       | 100 ppm  | 60-180 °C                      | Tests were<br>performed in a<br>fixed-bed quartz<br>flow reactor<br>(length = 300 mm,                                                      | 100% conversion<br>at 120 °C<br>100 %<br>conversion with<br>8.86% loading<br>amount in<br>MnO <sub>2</sub> /cellulose<br>at 140 °C                                                                  |    |

|                     |         |                                | diameter = 4 mm)                                                                                                                                  | ~16.7%                                                                                                                                             | 13 |
|---------------------|---------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                     |         |                                | GHSV =50 000 <sup>-1</sup>                                                                                                                        | conversion at                                                                                                                                      |    |
|                     |         |                                |                                                                                                                                                   | 60 °C                                                                                                                                              |    |
|                     |         |                                | Performed with a                                                                                                                                  | 100% HCHO                                                                                                                                          |    |
|                     |         |                                | fixed-bed quartz                                                                                                                                  | conversion was                                                                                                                                     |    |
| Pt/TiO <sub>2</sub> | 100 ppm | Room<br>temperature<br>(25 °C) | flow reactor<br>(length = 300 mm,<br>diameter = 4 mm)<br>GHSV: 50,000,<br>100,000, 200,000<br>$h^{-1}$ by changing the<br>used catalyst<br>volume | attained in the<br>space velocity of<br>GHSV = 50,000<br>$h^{-1}$ , and about<br>97% and $58%HCHOconversion in thespace velocity ofGHSV = 100,000$ | 33 |
|                     |         |                                | volume                                                                                                                                            | GHSV = 100,000<br>and 200,000 h <sup>-1</sup> ,                                                                                                    |    |

### Content of $\delta$ -MnO<sub>2</sub>.

#### Table S2. Preparation of MnO<sub>2</sub>/ACF.

| Conc. of KMnO <sub>4</sub>      | Conc. of MnSO <sub>4</sub>                                          | MnO <sub>2</sub> content in                                                                                             |  |
|---------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| solution (mol L <sup>-1</sup> ) | solution (mol L <sup>-1</sup> )                                     | MnO <sub>2</sub> /ACF (wt.%)                                                                                            |  |
| 0.013                           | 0.010                                                               | 5.62                                                                                                                    |  |
| 0.026                           | 0.020                                                               | 11.74                                                                                                                   |  |
| 0.040                           | 0.030                                                               | 16.12                                                                                                                   |  |
| 0.052                           | 0.040                                                               | 22.42                                                                                                                   |  |
| 0.066                           | 0.050                                                               | 29.33                                                                                                                   |  |
|                                 | solution (mol L <sup>-1</sup> )<br>0.013<br>0.026<br>0.040<br>0.052 | solution (mol L <sup>-1</sup> ) solution (mol L <sup>-1</sup> )   0.013 0.010   0.026 0.020   0.040 0.030   0.052 0.040 |  |

Results illustrated that the amount of  $\delta\text{-}MnO_2$  NPs attached in MnO\_2/ACF was determined by the initial concentration of MnSO\_4 and KMnO\_4 solution. By altering

the concentration of  $MnSO_4$  and  $KMnO_4$  solution, different  $MnO_2$  contents of  $MnO_2/ACF$  could be obtained. With the increasing of the concentration of  $MnSO_4$  and  $KMnO_4$  solution, the content of  $\delta$ -MnO<sub>2</sub> was increasing.

#### Calculation of formaldehyde removal amount

The removal capacity of formaldehyde was calculated according to the following equation (equation [1]):

where W is the removal amount of formaldehyde per unit weight of adsorbent (mol/g), P is atmospheric pressure (1 atm), V is volume of removal formaldehyde at 80% breakthrough time which was calculated from the integrated area over breakthrough curve  $\times$  10<sup>-6</sup>  $\times$  0.2 L/min, R is universal gas constant (0.08204 atm  $\times$  mol<sup>-1</sup>  $\times$  K<sup>-1</sup>), T is operating temperature (298.15 K), and m is mass of adsorbent.

Finally, W was converted to weight percentage of removed formaldehyde per unit weight of adsorbent and labelled as  $W_0$  (mg/g).

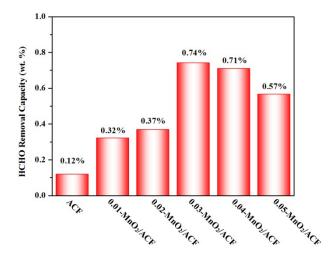



Fig. S1 HCHO removal capacities of ACF and MnO<sub>2</sub>/ACF samples.

#### References

[S1] Song Y, Qiao W, Yoon S-H, Mochida I, Guo Q, Liu L. Removal of formaldehyde at low concentration using various activated carbon fibers. J Appl Polym Sci 2007;106(4);2151-2157.