Supporting Information

A Facile Access to Substituted Cationic 12-Azapyrene Salts by Rhodium(III)-Catalyzed C-H Annulation of N Arylpyridinium Salts
Boya Feng, Danyang Wan, Lipeng Yan, Vilas D. Kadam, Jingsong You and Ge Gao*
Key Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
E-mail:gg2b@scu.edu.cn

Table of Contents

I. General remarks S1
II. General procedure for the synthesis of N -arylpyridinium salts S1
III. Optimization of the reaction conditions S2
IV. General procedure for the synthesis of 12-azapyrene derivatives S2
V. H/D Exchange experiments S3
VI. Experimental data for the described substances S6
VII. Photophysical spectra of 12-azapyrene derivatives in $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ S18
VIII. Single crystal X-Ray structure S21
XI. References S21

I. General remarks

Unless otherwise noted, all reagents were prepared from commercial suppliers and used without further purification. Alkynes ${ }^{1}$ and $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}{ }^{2}$ were prepared according to the literature procedure. DCE, MeCN, DMF, DMSO were dried by refluxing over CaH_{2} and freshly distilled prior to use. Toluene and 1,4-dioxane were dried by refluxing over sodium and freshly distilled prior to use. NMR spectra were recorded on a Bruker AV II-400 MHz or Agilent 400-MR DD2 spectrometer (${ }^{1} \mathrm{H}$ NMR at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 100 MHz and ${ }^{19} \mathrm{~F}$ at 376 MHz). The ${ }^{1} \mathrm{H}$ NMR (400 MHz) chemical shifts and the ${ }^{13} \mathrm{C}$ NMR (100 MHz) chemical shifts were measured relative to CDCl_{3} or DMSO- d_{6} as the internal reference $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=77.16 \mathrm{ppm} ; \mathrm{DMSO}-d_{6}: \delta_{\mathrm{H}}=2.50\right.$ ppm, $\delta_{\mathrm{C}}=39.52 \mathrm{ppm}$). High resolution mass spectra (HRMS) were recorded on a Waters-Q-TOF-Premier (ESI) or a Shimadzu LCMS-IT-TOF (ESI). UV/vis spectra were measured on a HITACHI U-2910. Fluorescence spectra were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer with a calibrated integrating sphere system.

II. General procedure for the synthesis of \mathbf{N}-arylpyridinium salts

The N -arylpyridinium salts were synthesized from a modified procedure of our previous report. ${ }^{3}$ To a 25 mL round bottom flask, a substituted pyridine (2 mmol), a diaryliodonium tetrafluoroborate ($3 \mathrm{mmol}, 1.5$ equiv), copper acetate monohydrate (10 $\mathrm{mol} \%, 0.2 \mathrm{mmol})$ and DMF (8 ml) were added. The reaction mixture was then heated at $100{ }^{\circ} \mathrm{C}$ for 8 hours. After cooled down to room temperature, DMF was removed under vacuum. The mixture was dissolved in methanol and precipitated using ethyl ether to give the pure product suitable for analysis.

III. Optimization of the reaction conditions

Table S1 Optimization of the reaction conditions. ${ }^{a}$

		$\xrightarrow[\text { ase, oxidant }]{\text { Catalyst }}$				
Entry	Catalyst (5 mol \%)	Oxidant (equiv)	Base (equiv)	Solvent	Yield b of 3a	Yield b of $4 a$
1	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{AgBF}_{4}(2)$	$\mathrm{NaOAc}(2)$	DCE	Trace	n.d.
2	$\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\left(\mathrm{SbF}_{6}\right)_{2}\right]$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	$\mathrm{NaOAc}(4)$	DCE	n.d.	88 \%
3	[$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{acac})_{2}(4)$	$\mathrm{NaOAc}(4)$	DCE	n.d.	n.d.
4	[$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{CuO}(4)$	$\mathrm{NaOAc}(4)$	DCE	n.d.	n.d.
5	[$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	-	DCE	n.d.	n.d.
6	[$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	-	$\mathrm{NaOAc}(4)$	DCE	n.d.	n.d.
7	-	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	$\mathrm{NaOAc}(4)$	DCE	n.d.	n.d.
8	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	$\mathrm{NaOAc}(4)$	DMF	n.d.	n.d.
9	[$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	$\mathrm{NaOAc}(4)$	DMSO	n.d.	n.d.
10	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	$\mathrm{NaOAc}(4)$	Toluene	28\%	21\%
11	[$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	$\mathrm{NaOAc}(4)$	MeCN	24\%	45\%
12	[$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	$\mathrm{NaOAc}(4)$	Dioxane	42\%	Trace
13	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	KOAc(4)	DCE	20\%	36\%
14	$\left[\mathrm{Cp} * \mathrm{IrCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	$\mathrm{NaOAc}(4)$	DCE	40\%	Trace
15	$\left[\mathrm{Cp} * \mathrm{CoCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	$\mathrm{NaOAc}(4)$	DCE	n.d.	n.d.

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}, 1$ equiv), $\mathbf{2 a}(0.4 \mathrm{mmol}, 4$ equiv), catalyst, base, oxidants in solvent (2 mL) under N_{2} at $140{ }^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .{ }^{b}$ Isolated yields.

IV. General procedure for the synthesis of 12-azapyrene derivatives

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with an
arylpyridinium salt $\mathbf{1}(0.1 \mathrm{mmol})$, an alkyne $\mathbf{2}(0.4 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(3.1 \mathrm{mg}, 0.005$ $\mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(73 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{NaOAc}(32.8 \mathrm{mg}, 0.4 \mathrm{mmol})$ under N_{2}. Dry DCE (2.0 mL) was then added and the tube was sealed with a teflon-coated screw cap. The reaction solution was heated at $140{ }^{\circ} \mathrm{C}$ for 16 h . After cooled to ambient temperature, 4.0 mL of saturated NaBF_{4} (aq.) was added and the mixture was stirred at room temperature for another 0.5 h under air. The organic layer was then separated and the water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL} \times 3)$. The combined organic phase was concentrated under vacuum and the residue was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral, 200-300 mesh) with $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 10$ to $1 / 3)$ to provide the desired product.

V. H/D Exchange experiments

a)

a) A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with 1a (0.1 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(3.1 \mathrm{mg}, 0.005 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(73 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{NaOAc}(32.8 \mathrm{mg}, 0.4 \mathrm{mmol})$ under N_{2}. Dry DCE $(2.0 \mathrm{~mL})$ and $\mathrm{D}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was then added and the tube was sealed with a teflon-coated screw cap. The reaction solution was heated at $140{ }^{\circ} \mathrm{C}$ for 3 h . After the mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The crude residue was subjected to the ${ }^{1} \mathrm{H}$ NMR analysis. The ${ }^{1} \mathrm{H}$ NMR spectum shows the incorporation
of deuterium into the labeled protons of the substrate 1a.

b) A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with 1a (0.1 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(3.1 \mathrm{mg}, 0.005 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2}(73 \mathrm{mg}, 0.4 \mathrm{mmol})$ under N_{2}. Dry DCE $(2.0 \mathrm{~mL})$ and $\mathrm{D}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was then added and the tube was sealed with a teflon-coated screw cap. The reaction solution was heated at $140^{\circ} \mathrm{C}$ for 3 h . After the mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The crude residue was subjected to the ${ }^{1} \mathrm{H}$ NMR analysis. The ${ }^{1} \mathrm{H}$ NMR spectum shows the incorporation of deuterium into the labeled protons of the substrate $\mathbf{1 a}$.

c) A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with 1a (0.1 mmol), diphenylacetylene $(0.4 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(3.1 \mathrm{mg}, 0.005 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2}(73 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{NaOAc}(32.8 \mathrm{mg}, 0.4 \mathrm{mmol})$ under N_{2}. Dry DCE $(2.0 \mathrm{~mL})$ and $\mathrm{D}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was then added and the tube was sealed with a tefloncoated screw cap. The reaction solution was heated at $140{ }^{\circ} \mathrm{C}$ for 3 h . After the mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The crude residue was subjected to the ${ }^{1} \mathrm{H}$ NMR analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum shows the incorporation of deuterium into the labeled protons of the single annulated product 3a.

VI. Experimental data for the described substances

4-(tert-Butyl)-1-phenylpyridin-1-ium tetrafluoroborate (1a): A white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=1.43(\mathrm{~s}, 9 \mathrm{H}), 7.61-7.68(\mathrm{~m}, 5 \mathrm{H}), 8.21(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 8.88(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.0,37.0,124.0$, 126.3, 130.9, 131.7, 142.3, 143.4, $172.8 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-151.92$ (s) ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$212.1434, found 212.1431.

4-(tert-butyl)-1-phenylpyridin-1-ium trifluoromethanesulfonate (4a'): A white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.45(\mathrm{~s}, 9 \mathrm{H}), 7.63-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.72-7.74$ (m, 2H), $8.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.93(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz} 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=30.1,37.1,124.1,126.3,131.0,131.8,142.2,143.6,172.9 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-78.27$ (s) ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}\right]^{+}[\mathrm{M}-$ $\left.\mathrm{BF}_{4}\right]^{+}$212.1434, found 212.1430.

1-Phenylpyridin-1-ium tetrafluoroborate (1b): An off-white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d 6$): $\delta=7.70-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.88-7.90(\mathrm{~m}, 2 \mathrm{H}), 8.29-8.33(\mathrm{~m}, 2 \mathrm{H})$, $8.79(\mathrm{tt}, J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.34-9.35(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right): \delta=124.8,128.1,130.2,131.2,142.8,145.0,146.6 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO-d d $^{\prime}: \delta=-148.25$ (s) ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}\right]^{+}\left[\mathrm{M}_{\left.-\mathrm{BF}_{4}\right]^{+}}\right.$ 156.0808 , found 156.0808 .

4-Methoxy-1-phenylpyridinium tetrafluoroborate (1c): An off-white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=4.19(\mathrm{~s}, 3 \mathrm{H}), 7.61-7.64(\mathrm{~m}, 7 \mathrm{H}), 8.67-8.70(\mathrm{~m}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=58.6,114.6,123.9,131.0,131.4,142.0,145.3$, $172.4 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-152.15$ (s) ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}\right]^{+}\left[\mathrm{M}_{\left.-\mathrm{BF}_{4}\right]^{+}}\right.$186.0913, found 186.0913.

3-Methyl-1-phenylpyridinium tetrafluoroborate (1d): A reddish-brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=2.71(\mathrm{~s}, 3 \mathrm{H}), 7.60-7.69(\mathrm{~m}, 5 \mathrm{H}), 8.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.77-8.79(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.5,124.07,124.09$, 129.7, 130.97, 130.99, 131.8, 142.4, 143.2, $161.2 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-151.93$ (s) ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$170.0964, found
170.0964.

4-Cyano-1-phenylpyridin-1-ium tetrafluoroborate (1e): A light-brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=7.77-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.87-7.91(\mathrm{~m}, 2 \mathrm{H}), 8.90(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d 6\right): \delta=$ $114.8,124.8,127.6,130.3,131.0,131.9,142.5,146.4 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO-d d): $\delta=-148.26$ (s) ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$181.0760, found 181.0758 .

4-(tert-Butyl)-1-(4-methoxyphenyl)pyridin-1-ium tetrafluoroborate (1f): A yellowish solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.44(\mathrm{~s}, 9 \mathrm{H}), 3.86(\mathrm{~s}, 9 \mathrm{H}), 7.08(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=30.1,36.9,56.0,110.2,116.0,125.3,126.1$, 143.2, 161.9, $172.1 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-152.11$ (s) ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 242.1539$, found 242.1541 .

4-tert-Butyl-1-(4-(methoxycarbonyl)phenyl)pyridinium tetrafluoroborate (1g): A white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.44(\mathrm{~s}, 9 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$
ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.99,37.2,52.9,124.4,126.4,132.2,133.2$, 143.3, 145.2, 165.3, 173.6 ppm. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-151.70$ (s) ppm. HRMS (ESI) calcd for [$\left.\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$270.1489, found 270.1487.

3-(tert-Butyl)-5,6-bis(4-chlorophenyl)pyrido[1,2-a]quinolin-11-ium
tetrafluoroborate (3a): Product 3a was prepared according to the general procedure as a white solid ($39.3 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.32$ (s, 9H), $7.16-$ $7.20(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $10.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.9,36.5,118.5$, 122.7, 123.9, 126.9, 128.6, 128.9, 129.09, 129.11, 129.5, 129.8, 130.5, 130.6, 133.1, 133.8, 133.9, 134.0, 134.6, 134.9, 143.3, 147.3, 166.0 ppm. ${ }^{19}$ F NMR (376 MHz , CDCl_{3}): $\delta=-152.78$ (s) ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 388.2060$, found 388.2051.

2-(tert-Butyl)-4,5,9,10-tetraphenylquinolizino $[3,4,5,6-i j a] q u i n o l i n-11-i u m$
tetrafluoroborate (4a): Product $\mathbf{4 a}$ was prepared according to the general procedure as a yellow-green solid ($58.5 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d 6$): $\delta=1.12$ (s, $9 \mathrm{H}), 7.34-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.51(\mathrm{~m}, 16 \mathrm{H}), 7.83(\mathrm{~s}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 8.19 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d): $\delta=29.4,35.5,120.3$, $126.8,127.4,128.6,128.80,128.83,128.9,129.2,129.8,130.3,131.4,134.5,134.7$, 134.9, 141.9, 144.8, $159.9 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO-d): $\delta=-148.34$ (s) ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{43} \mathrm{H}_{34} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 564.2686$, found 564.2682 .

2-(tert-Butyl)-4,5,9,10-tetraphenylquinolizino[3,4,5,6-ija]quinolin-11-ium
tetrafluoroborate (4a'): Product 4a' was prepared according to the general procedure as a yellow solid ($48.4 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d 6$): $\delta=1.12(\mathrm{~s}, 9 \mathrm{H})$, $7.32-7.36$ (m, 4H), $7.39-7.51(\mathrm{~m}, 16 \mathrm{H}), 7.83(\mathrm{~s}, 2 \mathrm{H}), 7.876$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.19$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d 6$): $\delta=29.4,35.5,120.3,126.8$, 127.4, 128.6, 128.80, 128.83, 128.9, 129.2, 129.8, 130.3, 131.4, 134.5, 134.7, 134.9, 141.9, 144.8, 159.9 ppm . ${ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO- $d 6$): $\delta=-77.77$ (s) ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{43} \mathrm{H}_{34} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 564.2686$, found 564.2684.

2-(tert-Butyl)-4,5,9,10-tetra-o-tolylquinolizino[3,4,5,6-ija]quinolin-11-ium
tetrafluoroborate (4b): Product $\mathbf{4 b}$ was prepared according to the general procedure as a green solid ($58.1 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6): $\delta=1.1-1.13$ (m, 9H), $2.03-2.30(\mathrm{~m}, 12 \mathrm{H}), 7.10-7.44(\mathrm{~m}, 16 \mathrm{H}), 7.65-7.67(\mathrm{~m}, 4 \mathrm{H}), 8.14-8.20(\mathrm{~m}$, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d 6): $\delta=19.2,19.3,29.4,35.3,109.6,112.4$, 119.6, 125.8, 126.0, 126.4, 126.5, 127.0, 128.9, 129.2, 129.3, 130.46, 130.47, 130.54, $130.6,131.9,133.5,133.8,133.9,134.09,134.13,135.5,135.6,136.4,141.36,141.38$, 144.9, 145.0, 160.3, 160.4 ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{47} \mathrm{H}_{42} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$620.3312, found 620.3307 .

2-tert-Butyl-5,6,10,11-tetram-tolylquinolizino[3,4,5,6-ija]quinolinium
tetrafluoroborate (4c): Product $\mathbf{4 c}$ was prepared according to the general procedure as a yellow-green solid ($60.1 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d 6$): $\delta=\delta=1.13$ (s, 9H), 2.30 ($\mathrm{s}, 6 \mathrm{H}$), 2.31 ($\mathrm{s}, 6 \mathrm{H}$), 7.11-7.26 (m, 12H), 7.32-7.40 (m, 4H), 7.84-7.86 (m, $4 \mathrm{H}), 8.17$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta=20.9,20.9$, 20.98, 21.01, 29.4, 35.5, 120.3, 126.3, 126.4, 126.8, 127.3, 127.37, 127.39, 128.61, $128.63,128.7,129.2,129.25,129.34,129.4,129.5,129.7,130.7,130.8,131.2,134.39$, 134.44, 134.66, 134.69, 134.8, 134.85, 137.91, 137.93, 138.1, 141.86, 141.88, 144.66, 144.72, 159.7 ppm . HRMS (ESI) calcd for $\left[\mathrm{C}_{47} \mathrm{H}_{42} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$620.3312, found 620.3311 .

2-(tert-Butyl)-4,5,9,10-tetra-p-tolylquinolizino[3,4,5,6-ija]quinolin-11-ium
tetrafluoroborate (4d): Product 4d was prepared according to the general procedure as a yellow-green solid ($61.4 \mathrm{mg}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d 6$): $\delta=1.12$ (s, 9H), 2.34 ($\mathrm{s}, 6 \mathrm{H}$), 2.35 ($\mathrm{s}, 6 \mathrm{H}$), $7.21-7.23$ (m, 4H), $7.27-7.32$ (m, 12H), $7.81-7.82$ (m, 4H), 8.13 (t, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $d 6$): $\delta=20.90$, $20.93,29.5,35.5,120.2,126.7,127.6,129.1,129.4,129.5,129.6,130.2,131.3,132.0$, 132.1, 134.5, 137.9, 138.0, 142.1, 144.8, 159.7 ppm . HRMS (ESI) calcd for $\left[\mathrm{C}_{47} \mathrm{H}_{42} \mathrm{~N}\right]^{+}$ $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$620.3312, found 620.3308 .

2-(tert-Butyl)-4,5,9,10-tetrakis(4-(tert-butyl)phenyl)quinolizino[3,4,5,6-
$\boldsymbol{i j a}$]quinolin-11-ium tetrafluoroborate (4e): Product $\mathbf{4 e}$ was prepared according to the general procedure as a yellow solid ($78.8 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=1.13(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~s}, 36 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.43$
$-7.47(\mathrm{~m}, 8 \mathrm{H}), 7.87(\mathrm{~s}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d 6$): $\delta=29.4,30.92,30.93,34.41,34.44,35.4,120.1,125.3$, 125.4, 126.67, 126.68, 127.4, 129.0, 130.1, 131.3, 131.9, 132.1, 134.7, 141.9, 145.0, $150.9,151.1,159.7 \mathrm{ppm}$. HRMS (ESI) calcd for $\left[\mathrm{C}_{59} \mathrm{H}_{66} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 788.5190$, found 788.5184.

2-(tert-Butyl)-4,5,9,10-tetrakis(4-methoxyphenyl)quinolizino[3,4,5,6-ija]quinolin-11-ium tetrafluoroborate (4f): Product $\mathbf{4 f}$ was prepared according to the general procedure as a green solid ($71 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d 6$): $\delta=1.16$ (s, $9 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 7.02-7.06(\mathrm{~m}, 8 \mathrm{H}), 7.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.87(\mathrm{~s}, 3 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d 6$): $\delta=29.5,35.5,55.16,55.18,114.25,114.31,120.1,126.7,126.9$, 127.1, 127.8, 129.6, 130.7, 131.3, 131.7, 134.5, 142.3, 144.9, 159.0, 159.1, 159.7 ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{47} \mathrm{H}_{42} \mathrm{NO}_{4}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$684.3108, found 684.3099.

2-(tert-Butyl)-4,5,9,10-tetrakis(4-chlorophenyl)quinolizino[3,4,5,6-ija]quinolin-
11-ium tetrafluoroborate (4g): Product $\mathbf{4 g}$ was prepared according to the general procedure as a yellow solid ($78.8 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d): $\delta=1.18$ (s, 9H), 7.38 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), $7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.59(\mathrm{t}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.84$ (s, 2H), 7.89 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta=29.5,35.7,120.5,127.0,127.2,129.1,129.2,130.1,131.2,131.4$, 132.3, 133.3, 133.5, 133.59, 133.61, 133.8, 141.6, 144.1, 160.6 ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{47} \mathrm{H}_{30} \mathrm{Cl}_{4} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 700.1127$, found 700.1134 .

2-tert-Butyl-5,6,10,11-tetrakis(4-(trifluoromethyl)phenyl)quinolizino[3,4,5,6-
$\boldsymbol{i j a}$]quinolinium tetrafluoroborate (4h): Product $\mathbf{4 h}$ was prepared according to the general procedure as a green solid ($85.8 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d 6$): δ $=1.16(\mathrm{~s}, 9 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.80(\mathrm{~s}, 2 \mathrm{H}), 7.87-$ $7.91(\mathrm{~m}, 10 \mathrm{H}), 8.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $d 6$): $\delta=$ $29.35,35.71,120.67,123.89\left(\mathrm{q}, J_{C-F}=272.1 \mathrm{~Hz}\right), 123.92\left(\mathrm{q}, J_{C-F}=272.4 \mathrm{~Hz}\right), 125.90$ $\left(\mathrm{q}, J_{C-F}=3.8 \mathrm{~Hz}\right), 125.98\left(\mathrm{q}, J_{C-F}=3.5 \mathrm{~Hz}\right), 126.75,127.43,129.28\left(\mathrm{q}, J_{C-F}=32.1 \mathrm{~Hz}\right)$, $129.45\left(\mathrm{q}, J_{C-F}=32.1 \mathrm{~Hz}\right), 130.40,131.49,131.53,133.44,138.72,141.31,143.90$, $160.89 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO- $d 6$): $\delta=-61.24(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}$), -148.34 (s) ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{47} \mathrm{H}_{30} \mathrm{NF}_{12}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 836.2181$, found 836.2179.

4,5,9,10-Tetrakis(4-acetylphenyl)-2-(tert-butyl)quinolizino[3,4,5,6-ija]quinolin-
11-ium tetrafluoroborate (4i): Product $4 \mathbf{i}$ was prepared according to the general procedure as a yellow solid ($68.8 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d 6$): $\delta=1.13$ (s, 9H), 2.60 (s, 6H), $2.61(\mathrm{~s}, 6 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H})$, 7.79 (s, 2H), 7.82 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.05-8.08(\mathrm{~m}, 8 \mathrm{H}), 8.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d 6$): $\delta=26.85,26.88,29.4,35.7,120.6,126.9,127.2$, 128.8, 128.9, 129.8, 130.2, 130.9, 131.4, 133.6, 136.7, 136.8, 139.0, 139.2, 141.4, 144.1, 160.6, 197.5, 197.6 ppm . HRMS (ESI) calcd for $\left[\mathrm{C}_{51} \mathrm{H}_{42} \mathrm{NO}_{4}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$ 732.3108 , found 732.3093.

2-(tert-Butyl)-4,5,9,10-tetrakis(3-cyanophenyl)quinolizino[3,4,5,6-ija]quinolin-11ium tetrafluoroborate $\mathbf{(4 j})$: Product $\mathbf{4 j}$ was prepared according to the general procedure as a yellow solid ($61.6 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d 6$): $\delta=1.19$ $(\mathrm{s}, 9 \mathrm{H}), 7.61-7.82(\mathrm{~m}, 11 \mathrm{H}), 7.91-8.06(\mathrm{~m}, 9 \mathrm{H}), 8.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d 6$): $\delta=29.4,35.9,112.06,112.14,118.2,121.0,126.7,127.7$, $130.4,130.47,130.53,131.5,132.9,133.1,133.2,133.95,133.98,134.2,135.1,135.2$, $135.3,135.4,135.6,141.2,143.6 \mathrm{ppm} . \mathrm{HRMS}(\mathrm{ESI})$ calcd for $\left[\mathrm{C}_{47} \mathrm{H}_{30} \mathrm{~N}_{5}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$ 664.2496, found 664.2499.

2-(tert-Butyl)-4,5,9,10-tetra(naphthalen-1-yl)quinolizino[3,4,5,6-ija]quinolin-11-

 ium tetrafluoroborate $\mathbf{(4 k) : ~ P r o d u c t ~} \mathbf{4 k}$ was prepared according to the general procedure as a yellow solid $(63.8 \mathrm{mg}, 75 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) : $\delta=0.68$ $(\mathrm{s}, 9 \mathrm{H}), 7.14-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.50-7.74(\mathrm{~m}, 11 \mathrm{H}), 7.80-8.02(\mathrm{~m}, 14 \mathrm{H}) \mathrm{ppm} . \mathrm{HRMS}$ (ESI) calcd for $\left[\mathrm{C}_{59} \mathrm{H}_{42} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 764.3312$, found 764.3302.

2-(tert-butyl)-4,5,9,10-tetrapropylquinolizino[3,4,5,6-ija]quinolin-11-ium
Product 41 was prepared according to the general procedure as a yellow solid (39.6 mg , $77 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=1.236-1.244(\mathrm{~m}, 12 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}), 1.78-$
$1.84(\mathrm{~m}, 8 \mathrm{H}), 3.23-3.29(\mathrm{~m}, 8 \mathrm{H}), 8.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.43-8.47(\mathrm{~m}, 4 \mathrm{H})$, ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.7,14.8,22.7,23.0,30.6,31.8,32.0,36.5,117.8$, 124.3, 126.8, 129.9, 130.4, 132.1, 140.9, 144.6, 160.8 ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 428.3312$, found 428.3310 .

4,5,9,10-Tetraphenylquinolizino[3,4,5,6-ija]quinolin-11-ium tetrafluoroborate (4m): Product $\mathbf{4 m}$ was prepared according to the general procedure as a yellow solid ($48.2 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$): $\delta=7.32-7.34$ (m, 4H), $7.39-7.46$ $(\mathrm{m}, 16 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.55(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $d 6$): $\delta=124.0,126.6,127.7$, 128.6, 128.7, 128.8, 128.9, 129.2, 129.9, 130.3, 131.3, 131.8, 134.8, 134.9, 137.7, 141.9, 144.8 ppm . HRMS (ESI) calcd for $\left[\mathrm{C}_{43} \mathrm{H}_{34} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$564.2686, found 564.2682.

2-Methoxy-4,5,9,10-tetraphenylquinolizino[3,4,5,6-ija]quinolin-11-ium
tetrafluoroborate ($\mathbf{4 n}$): Product $\mathbf{4 n}$ was prepared according to the general procedure as a grey solid ($48.1 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d 6$): $\delta=3.34-4.32(\mathrm{~m}$, 3H), $7.21-7.27$ (m, 3H), 7.32 - 7.33 (m, 4H), $7.38-7.45$ (m, 15H), 7.77 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 8.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d 6$): $\delta=56.9,109.0$, 126.5, 127.17, 127.18, 128.5, 128.7, 128.8, 128.9, 129.2, 130.3, 131.2, 133.8, 134.6, 134.9, 144.4, 144.5, 163.6 ppm . HRMS (ESI) calcd for $\left[\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{NO}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$ 548.2165, found 548.2169.

2-(tert-Butyl)-7-methoxy-4,5,9,10-tetraphenylquinolizino[3,4,5,6-ija]quinolin-11ium tetrafluoroborate (40): Product 40 was prepared according to the general procedure as a yellow solid ($50.4 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.17$ (s, $9 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 22 \mathrm{H}), 7.93(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=30.1,35.9,55.9,112.6,121.7,128.65,128.74,128.9,129.0,129.6,130.0$, $130.7,131.8,135.2,135.3,135.5,141.3,144.9,159.2,159.5 \mathrm{ppm}$. HRMS (ESI) calcd for $\left[\mathrm{C}_{44} \mathrm{H}_{36} \mathrm{NO}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$594.2791, found 594.2794.

1-Methyl-4,5,9,10-tetraphenylquinolizino[3,4,5,6-ija]quinolin-11-ium
tetrafluoroborate (4p): Product $\mathbf{4 p}$ was prepared according to the general procedure as a green solid $(36.6 \mathrm{mg}, 70 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d 6$): $\delta=2.56(\mathrm{~s}, 3 \mathrm{H})$, $7.30-7.47(\mathrm{~m}, 20 \mathrm{H}), 7.76(\mathrm{~s}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.16(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d 6): $\delta=21.6,124.1,126.7,127.3,128.5,128.69$, $128.72,128.8,129.2,129.6,130.4,131.5,134.3,134.7,135.0,141.5,144.8,149.7 \mathrm{ppm}$. HRMS (ESI) calcd for $\left[\mathrm{C}_{44} \mathrm{H}_{36} \mathrm{~N}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$522.2216, found 522.2208.

2-Cyano-4,5,9,10-tetraphenylquinolizino[3,4,5,6-ija]quinolin-11-ium
tetrafluoroborate $(\mathbf{4 q})$: Product $\mathbf{4 q}$ was prepared according to the general procedure as a reddish-brown solid (37.9 mg, $61 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6$): \delta=7.32-$
7.33 (m, 4H), 7.37 - 7.46 (m, 16H), 8.02 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 8.33-8.39 (m, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d 6$): $\delta=115.4,118.9,125.5,127.6,128.0,128.8,128.98$, 129.03, 129.1, 130.5, 131.2, 131.84, 133.84, 134.5, 135.0, 142.2, 146.8 ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{40} \mathrm{H}_{25} \mathrm{~N}_{2}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 533.2012$, found 533.2007.

2-(tert-Butyl)-7-(methoxycarbonyl)-4,5,9,10-tetra-o-tolylquinolizino[3,4,5,6-

 $\boldsymbol{i j a}$]quinolin-11-ium tetrafluoroborate (4r): Product $\mathbf{4 r}$ was prepared according to the general procedure as a greenwish solid ($49.9 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$d 6): \delta=1.13(\mathrm{~s}, 9 \mathrm{H}), 2.03-2.31(\mathrm{~m}, 12 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 7.26-7.43(\mathrm{~m}, 16 \mathrm{H}), 7.72(\mathrm{~s}$, 2 H), 8.13 (s, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $d 6$): $\delta=19.2,19.3,29.4,35.5$, $53.2,109.6,112.4,120.1,125.8,126.0,126.1,127.5,129.2,129.4,130.6,130.7,131.8$, 133.2, 133.4, 135.1, 135.47, 135.51, 136.3, 141.8, 144.9, 164.6, 192.5 ppm. HRMS (ESI) calcd for $\left[\mathrm{C}_{49} \mathrm{H}_{44} \mathrm{NO}_{2}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 678.3367$, found 678.3360 .

2-(tert-Butyl)-4,5,9,10-tetrakis(4-(diphenylamino)phenyl)quinolizino[3,4,5,6-
ija]quinolin-11-ium tetrafluoroborate (4s): Product 4s was prepared according to the general procedure as a crimson solid ($121.2 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=1.28(\mathrm{~s}, 9 \mathrm{H}), 7.05-7.12(\mathrm{~m}, 32 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 16 \mathrm{H}), 8.07$ (s, 2H), 8.17 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO$\left.d_{6}\right): \delta=29.5,35.6,120.16,122.58,123.22,123.23,123.5,123.6,124.0,124.2,126.9$, $127.3,128.6,128.8,129.69,129.70,130.8,131.5,131.8,134.5,141.9,144.8,146.8$, 146.9, 147.35, 147.38, 159.85 ppm . HRMS (ESI) calcd for $\left[\mathrm{C}_{91} \mathrm{H}_{71} \mathrm{~N}_{5}\right]^{+}\left[\mathrm{M}-\mathrm{BF}_{4}+\mathrm{H}\right]^{+}$ 1233.5704, found 1233.5708 .
VII. Photophysical spectra of 12-azapyrene derivatives in $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$

Compound	$\lambda_{\text {max }}$	$\lambda_{\text {ex }}$	$\lambda_{\text {em }}$	Φ_{F}
$\mathbf{4 a}$	354	356	468	0.76
$\mathbf{4 b}$	353	354	458	0.79
$\mathbf{4 c}$	355	356	472	0.75
$\mathbf{4 d}$	356	356	475	0.62
$\mathbf{4 e}$	358	359	476	0.91
$\mathbf{4 f}$	357	353	489	0.78
$\mathbf{4 g}$	354	351	471	0.61
$\mathbf{4 h}$	351	352	464	0.28
$\mathbf{4 i}$	353	355	469	0.68
$\mathbf{4 j}$	351	352	463	0.68
$\mathbf{4 k}$	352	353	467	0.59
$\mathbf{4 l}$	354	351	451	0.48
$\mathbf{4 m}$	355	355	481	0.58
$\mathbf{4 n}$	355	355	452	0.66
$\mathbf{4 o}$	316	362	460	0.59
$\mathbf{4 p}$	355	355	468	0.70
$\mathbf{4 q}$	365	360	536	0.36
$\mathbf{4 r}$	354	355	460	0.77
$\mathbf{4 s}$	438	489	614	0.26

Table S2 Photophysical data of 12-azapyrene derivatives in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

VIII. Single crystal X-Ray structure

Figure S1 X-Ray single crystal structure of 4s

XI. References

(1) (a) M. J. Mio, L. C. Kople, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth, and P. A. Grieco, Org. Lett., 2002, 4, 3199; b) K. Park, G. Bae, J. Moon, J. Choe, K. H. Song, and S. Lee, J. Org. Chem., 2010, 75, 6244.
(2) C. White, A. Yates, and P. M. Maitlis, Inorg. Synth., 1992, 29, 228.
(3) T. Lv, Z. Wang, J. You, J. Lan, and G Gao, J. Org. Chem., 2013, 78, 5723
IX. Copies of NMR Spectra for Compounds
${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 a}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 a}$:

$\stackrel{\stackrel{\circ}{\text { ® }}}{\stackrel{-}{1}}$
 $\stackrel{\circ}{1}$
$\begin{array}{ll}8 & \vdots \\ \text { ® } \\ \text { ® } \\ \text { i } \\ \text { i }\end{array}$

${ }^{19}$ F NMR spectra of $\mathbf{1 a}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 a}{ }^{\prime}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 a}$ ':
sos)

$\stackrel{\square}{7}$

$\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
${ }^{19}$ F NMR spectra of $\mathbf{1 a}$ ':

S92 8L-

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 b}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 b}$:

$\left.\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$
${ }^{19}$ F NMR spectra of $\mathbf{1 b}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 c}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 c}$:

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{1 c}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 d}$:

${ }^{13} \mathrm{C}$ NMR spectra of 1d:

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$
${ }^{19}$ F NMR spectra of $\mathbf{1 d}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 e}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 e}$:

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{1 e}$:

$+48.261$
\square

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 f}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 f}$:
$\underset{\substack{0 \\ 0}}{\text { 号 }}$

77.16
-56.02

-36.94
-30.05
${ }^{19}$ F NMR spectra of $\mathbf{1 f}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 g}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 g}$:

${ }^{19}$ F NMR spectra of $\mathbf{1 g}$:

\qquad

${ }^{1} \mathrm{H}$ NMR spectra of 3a：

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a}$ ：

${ }^{19}$ F NMR spectra of $\mathbf{3 a}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 a}$:

${ }^{13} \mathrm{C}$ NMR spectra of 4 a :

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{4 a}$:

\qquad

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 a}$ ':

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 a}$ ':

${ }^{19}$ F NMR spectra of $\mathbf{4} \mathbf{a}^{\prime}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 b}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 b}$:

230	220	210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \mathrm{f} 1(\mathrm{ppm} \end{gathered}$	100	90	8		70	60	50		40	30	20	1	10	0	-1

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 c}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 c}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 d}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 d}$:

Nin ふis ふis

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 e}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 e}$:

${ }^{1} H$ NMR spectra of $\mathbf{4 f}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 f}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 g}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 g}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 h}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 h}$:

${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{4 h}$:

$$
\begin{aligned}
& \infty \\
& \underset{\sim}{\infty} \stackrel{\infty}{\sim} \\
& \stackrel{\sim}{\oplus} \\
& \vdots
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectra of $4 \mathbf{i}$ ：

${ }^{13} \mathrm{C}$ NMR spectra of 4 i ：

合志	J	Nす
ぶふ	8	¢
V	।	¢0，

[^0]${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 j}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 j}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 k}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 k}$:

${ }^{1} \mathrm{H}$ NMR spectra of 41:

${ }^{13} \mathrm{C}$ NMR spectra of 41:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 m}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 m}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 n}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 n}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 0}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 0}$:

n
n
i
i

$\begin{array}{cc}\underset{m}{\infty} \\ \cdots & \stackrel{m}{\infty} \\ 1 & 1\end{array}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 p}$:

\qquad

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 p}$:
(

[^1]${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 q}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 q}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 r}$:

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 r}$:

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 s}$:

${ }^{13} \mathrm{C}$ NMR spectra of 4 s :

[^0]:

[^1]:

