Supporting Information

A Facile Access to Substituted Cationic 12-Azapyrene Salts by Rhodium(III)-Catalyzed C–H Annulation of *N*-

Arylpyridinium Salts

Boya Feng, Danyang Wan, Lipeng Yan, Vilas D. Kadam, Jingsong You and Ge Gao*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China

E-mail: gg2b@scu.edu.cn

Table of Contents

I. General remarks	S1
II. General procedure for the synthesis of <i>N</i> -arylpyridinium salts	S1
III. Optimization of the reaction conditions	S2
IV. General procedure for the synthesis of 12-azapyrene derivatives	S2
V. H/D Exchange experiments	
VI. Experimental data for the described substances	S6
VII. Photophysical spectra of 12-azapyrene derivatives in CH ₂ Cl ₂	S18
VIII. Single crystal X-Ray structure	S21
XI. References	S21

I. General remarks

Unless otherwise noted, all reagents were prepared from commercial suppliers and used without further purification. Alkynes¹ and [Cp*RhCl₂]₂² were prepared according to the literature procedure. DCE, MeCN, DMF, DMSO were dried by refluxing over CaH₂ and freshly distilled prior to use. Toluene and 1,4-dioxane were dried by refluxing over sodium and freshly distilled prior to use. NMR spectra were recorded on a Bruker AV II-400 MHz or Agilent 400-MR DD2 spectrometer (¹H NMR at 400 MHz, ¹³C NMR at 100 MHz and ¹⁹F at 376 MHz). The ¹H NMR (400 MHz) chemical shifts and the ¹³C NMR (100 MHz) chemical shifts were measured relative to CDCl₃ or DMSO-*d*₆ as the internal reference (CDCl₃: $\delta_{\rm H}$ = 7.26 ppm, $\delta_{\rm C}$ = 77.16 ppm; DMSO-*d*₆: $\delta_{\rm H}$ = 2.50 ppm, $\delta_{\rm C}$ = 39.52 ppm). High resolution mass spectra (HRMS) were recorded on a Waters-Q-TOF-Premier (ESI) or a Shimadzu LCMS-IT-TOF (ESI). UV/vis spectra were measured on a HITACHI U-2910. Fluorescence spectra were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer with a calibrated integrating sphere system.

II. General procedure for the synthesis of N-arylpyridinium salts

The *N*-arylpyridinium salts were synthesized from a modified procedure of our previous report.³ To a 25 mL round bottom flask, a substituted pyridine (2 mmol), a diaryliodonium tetrafluoroborate (3 mmol, 1.5 equiv), copper acetate monohydrate (10 mol%, 0.2 mmol) and DMF (8 ml) were added. The reaction mixture was then heated at 100 °C for 8 hours. After cooled down to room temperature, DMF was removed under vacuum. The mixture was dissolved in methanol and precipitated using ethyl ether to give the pure product suitable for analysis.

III. Optimization of the reaction conditions

Table S1 Optimization of the reaction conditions.^a

	Ph Ph BF_4 + Ph BF_4 + Bh Ph BF_4 - Bh	Catalyst ► ase, oxidant	f-Bu BF ₄ Ph Ph +	Ph ® Ph Ph	BU BF ₄ Ph Ph	
	1a 2a		3a	4a		
Entry	Catalyst (5 mol %)	Oxidant	Base	Solvent	Yield	Yield
		(equiv)	(equiv)		^b of	^b of
					3a	4 a
1	[Cp*RhCl ₂] ₂	$AgBF_4(2)$	NaOAc(2)	DCE	Trace	n.d.
2	$[Cp*Rh(MeCN)_3(SbF_6)_2]$	$Cu(OAc)_2(4)$	NaOAc(4)	DCE	n.d.	88 %
3	[Cp*RhCl ₂] ₂	$Cu(acac)_2(4)$	NaOAc(4)	DCE	n.d.	n.d.
4	[Cp*RhCl ₂] ₂	CuO(4)	NaOAc(4)	DCE	n.d.	n.d.
5	[Cp*RhCl ₂] ₂	$Cu(OAc)_2(4)$	_	DCE	n.d.	n.d.
6	[Cp*RhCl ₂] ₂	_	NaOAc(4)	DCE	n.d.	n.d.
7	-	$Cu(OAc)_2(4)$	NaOAc(4)	DCE	n.d.	n.d.
8	[Cp*RhCl ₂] ₂	$Cu(OAc)_2(4)$	NaOAc(4)	DMF	n.d.	n.d.
9	[Cp*RhCl ₂] ₂	$Cu(OAc)_2(4)$	NaOAc(4)	DMSO	n.d.	n.d.
10	[Cp*RhCl ₂] ₂	$Cu(OAc)_2(4)$	NaOAc(4)	Toluene	28%	21%
11	[Cp*RhCl ₂] ₂	$Cu(OAc)_2(4)$	NaOAc(4)	MeCN	24%	45%
12	[Cp*RhCl ₂] ₂	$Cu(OAc)_2(4)$	NaOAc(4)	Dioxane	42%	Trace
13	[Cp*RhCl ₂] ₂	$Cu(OAc)_2(4)$	KOAc(4)	DCE	20%	36%
14	[Cp*IrCl ₂] ₂	$Cu(OAc)_2(4)$	NaOAc(4)	DCE	40%	Trace
15	[Cp*CoCl ₂] ₂	$Cu(OAc)_2(4)$	NaOAc(4)	DCE	n.d.	n.d.

^{*a*} Reaction conditions: **1a**(0.1 mmol, 1 equiv), **2a**(0.4 mmol, 4 equiv), catalyst, base, oxidants in solvent (2 mL) under N₂ at 140 °C for 16 h. ^{*b*} Isolated yields.

IV. General procedure for the synthesis of 12-azapyrene derivatives

A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with an

arylpyridinium salt **1** (0.1 mmol), an alkyne **2** (0.4 mmol), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol), Cu(OAc)₂ (73 mg, 0.4 mmol) and NaOAc (32.8 mg, 0.4 mmol) under N₂. Dry DCE (2.0 mL) was then added and the tube was sealed with a teflon-coated screw cap. The reaction solution was heated at 140 °C for 16 h. After cooled to ambient temperature, 4.0 mL of saturated NaBF₄ (aq.) was added and the mixture was stirred at room temperature for another 0.5 h under air. The organic layer was then separated and the water layer was extracted with CH₂Cl₂ (5.0 mL×3). The combined organic phase was concentrated under vacuum and the residue was purified by column chromatography on Al₂O₃ (neutral, 200-300 mesh) with MeCN/CH₂Cl₂ (1/10 to 1/3) to provide the desired product.

a) A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with 1a (0.1 mmol), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol), Cu(OAc)₂ (73 mg, 0.4 mmol) and NaOAc (32.8 mg, 0.4 mmol) under N₂. Dry DCE (2.0 mL) and D₂O (1.0 mL) was then added and the tube was sealed with a teflon-coated screw cap. The reaction solution was heated at 140 °C for 3 h. After the mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The crude residue was subjected to the ¹H NMR analysis. The ¹H NMR spectum shows the incorporation

of deuterium into the labeled protons of the substrate 1a.

b) A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with 1a (0.1 mmol), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol) and Cu(OAc)₂ (73 mg, 0.4 mmol) under N₂. Dry DCE (2.0 mL) and D₂O (1.0 mL) was then added and the tube was sealed with a teflon-coated screw cap. The reaction solution was heated at 140 °C for 3 h. After the mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The crude residue was subjected to the ¹H NMR analysis. The ¹H NMR spectum shows the incorporation of deuterium into the labeled protons of the substrate 1a.

c) A flame-dried Schlenk tube equipped with a magnetic stir bar was charged with 1a (0.1 mmol), diphenylacetylene (0.4 mmol), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol), Cu(OAc)₂ (73 mg, 0.4 mmol) and NaOAc (32.8 mg, 0.4 mmol) under N₂. Dry DCE (2.0 mL) and D₂O (1.0 mL) was then added and the tube was sealed with a teflon-coated screw cap. The reaction solution was heated at 140 °C for 3 h. After the mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The crude residue was subjected to the ¹H NMR analysis. The ¹H NMR spectrum shows the incorporation of deuterium into the labeled protons of the single annulated product 3a.

VI. Experimental data for the described substances

4-(*tert***-Butyl)-1-phenylpyridin-1-ium tetrafluoroborate (1a):** A white solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.43$ (s, 9H), 7.61 – 7.68 (m, 5H), 8.21 (d, J = 5.6 Hz, 2H), 8.88 (d, J = 5.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 30.0, 37.0, 124.0, 126.3, 130.9, 131.7, 142.3, 143.4, 172.8 ppm. ¹⁹F NMR (376 MHz, CDCl₃): <math>\delta = -151.92$ (s) ppm. HRMS (ESI) calcd for [C₁₅H₁₈N]⁺ [M-BF₄]⁺ 212.1434, found 212.1431.

4-(*tert***-butyl)-1-phenylpyridin-1-ium trifluoromethanesulfonate (4a'):** A white solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.45$ (s, 9H), 7.63 – 7.64 (m, 3H), 7.72 – 7.74 (m, 2H), 8.21 (d, J = 6.8 Hz, 2H), 8.93 (dd, J = 6.4 Hz, 1.2 Hz 2H) ppm. ¹³C NMR (100

MHz, CDCl₃): δ = 30.1, 37.1, 124.1, 126.3, 131.0, 131.8, 142.2, 143.6, 172.9 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -78.27 (s) ppm. HRMS (ESI) calcd for [C₁₅H₁₈N]⁺ [M-BF₄]⁺ 212.1434, found 212.1430.

1-Phenylpyridin-1-ium tetrafluoroborate (1b): An off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.70 – 7.80 (m, 3H), 7.88 – 7.90 (m, 2H), 8.29 – 8.33 (m, 2H), 8.79 (tt, *J* = 8.0 Hz, 1.2 Hz, 1H), 9.34 – 9.35 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 124.8, 128.1, 130.2, 131.2, 142.8, 145.0, 146.6 ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ = -148.25 (s) ppm. HRMS (ESI) calcd for [C₁₁H₁₀N]⁺ [M-BF₄]⁺ 156.0808, found 156.0808.

4-Methoxy-1-phenylpyridinium tetrafluoroborate (1c): An off-white solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 4.19$ (s, 3H), 7.61 – 7.64 (m, 7H), 8.67 – 8.70 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 58.6$, 114.6, 123.9, 131.0, 131.4, 142.0, 145.3, 172.4 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -152.15$ (s) ppm. HRMS (ESI) calcd for $[C_{12}H_{12}NO]^+$ [M-BF₄]⁺ 186.0913, found 186.0913.

3-Methyl-1-phenylpyridinium tetrafluoroborate (1d): A reddish-brown solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.71$ (s, 3H), 7.60 – 7.69 (m, 5H), 8.01 (d, J = 6.4 Hz, 2H), 8.77 – 8.79 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 22.5$, 124.07, 124.09, 129.7, 130.97, 130.99, 131.8, 142.4, 143.2, 161.2 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -151.93$ (s) ppm. HRMS (ESI) calcd for [C₁₂H₁₂N]⁺ [M-BF₄]⁺ 170.0964, found

170.0964.

4-Cyano-1-phenylpyridin-1-ium tetrafluoroborate (1e): A light-brown solid. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 7.77 - 7.79$ (m, 3H), 7.87 - 7.91 (m, 2H), 8.90 (d, J = 6.0 Hz, 2H), 9.67 (d, J = 7.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 114.8$, 124.8, 127.6, 130.3, 131.0, 131.9, 142.5, 146.4 ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆): $\delta = -148.26$ (s) ppm. HRMS (ESI) calcd for [C₁₂H₉N]⁺ [M-BF₄]⁺ 181.0760, found 181.0758.

4-(*tert*-Butyl)-1-(4-methoxyphenyl)pyridin-1-ium tetrafluoroborate (1f): A yellowish solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.44$ (s, 9H), 3.86 (s, 9H), 7.08 (d, J = 8.8 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 8.15 (d, J = 6.4 Hz, 2H), 8.81 (d, J = 6.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 30.1$, 36.9, 56.0, 110.2, 116.0, 125.3, 126.1, 143.2, 161.9, 172.1 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -152.11$ (s) ppm. HRMS (ESI) calcd for [C₁₆H₂₀NO]⁺ [M-BF₄]⁺ 242.1539, found 242.1541.

4-*tert***-Butyl-1-(4-(methoxycarbonyl)phenyl)pyridinium tetrafluoroborate (1g)**: A white solid. ¹H NMR (400 MHz, CDCl₃): δ = 1.44 (s, 9H), 3.96 (s, 3H), 7.82 (d, *J* = 8.4 Hz, 2H), 8.20 (d, *J* = 6.8 Hz, 2H), 8.25 (d, *J* = 8.4 Hz, 2H), 8.90 (d, *J* = 6.8 Hz, 2H)

ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 29.99, 37.2, 52.9, 124.4, 126.4, 132.2, 133.2, 143.3, 145.2, 165.3, 173.6 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -151.70 (s) ppm. HRMS (ESI) calcd for [C₁₇H₂₀NO₂]⁺ [M-BF₄]⁺ 270.1489, found 270.1487.

3-(tert-Butyl)-5,6-bis(4-chlorophenyl)pyrido[1,2-a]quinolin-11-ium

tetrafluoroborate (3a): Product 3a was prepared according to the general procedure as a white solid (39.3 mg, 83 %). ¹H NMR (400 MHz, CDCl₃): δ = 1.32 (s, 9H), 7.16 – 7.20 (m, 4H), 7.32 – 7.37 (m, 6H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 7.2 Hz, 1H), 7.83 (s, 1H), 8.15 (t, *J* = 8.0 Hz, 1H), 8.38 (d, *J* = 6.8 Hz, 1H), 9.19 (d, *J* = 8.8 Hz, 1H), 10.41 (d, *J* = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 29.9, 36.5, 118.5, 122.7, 123.9, 126.9, 128.6, 128.9, 129.09, 129.11, 129.5, 129.8, 130.5, 130.6, 133.1, 133.8, 133.9, 134.0, 134.6, 134.9, 143.3, 147.3, 166.0 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -152.78 (s) ppm. HRMS (ESI) calcd for [C₂₉H₂₆N]⁺ [M-BF₄]⁺ 388.2060, found 388.2051.

2-(*tert*-Butyl)-4,5,9,10-tetraphenylquinolizino[3,4,5,6-*ija*]quinolin-11-ium

tetrafluoroborate (4a): Product 4a was prepared according to the general procedure as a yellow-green solid (58.5 mg, 90 %). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.12 (s, 9H), 7.34 – 7.36 (m, 4H), 7.39 – 7.51 (m, 16H), 7.83 (s, 2H), 7.86 (d, *J* = 8.0 Hz, 2H), 8.19 (t, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 29.4, 35.5, 120.3, 126.8, 127.4, 128.6, 128.80, 128.83, 128.9, 129.2, 129.8, 130.3, 131.4, 134.5, 134.7, 134.9, 141.9, 144.8, 159.9 ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ = -148.34 (s) ppm. HRMS (ESI) calcd for [C₄₃H₃₄N]⁺ [M-BF₄]⁺ 564.2686, found 564.2682.

2-(*tert*-Butyl)-4,5,9,10-tetraphenylquinolizino[3,4,5,6-*ija*]quinolin-11-ium

tetrafluoroborate (4a'): Product 4a' was prepared according to the general procedure as a yellow solid (48.4 mg, 68 %). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.12 (s, 9H), 7.32 – 7.36 (m, 4H), 7.39 – 7.51 (m, 16H), 7.83 (s, 2H), 7.876 (d, *J* = 8.0 Hz, 2H), 8.19 (t, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 29.4, 35.5, 120.3, 126.8, 127.4, 128.6, 128.80, 128.83, 128.9, 129.2, 129.8, 130.3, 131.4, 134.5, 134.7, 134.9, 141.9, 144.8, 159.9 ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ = -77.77 (s) ppm. HRMS (ESI) calcd for [C₄₃H₃₄N]⁺ [M-BF₄]⁺ 564.2686, found 564.2684.

2-(tert-Butyl)-4,5,9,10-tetra-o-tolylquinolizino[3,4,5,6-ija]quinolin-11-ium

tetrafluoroborate (4b): Product 4b was prepared according to the general procedure as a green solid (58.1 mg, 82 %). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 1.1 - 1.13$ (m, 9H), 2.03 - 2.30 (m, 12H), 7.10 - 7.44 (m, 16H), 7.65 - 7.67 (m, 4H), 8.14 - 8.20 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 19.2$, 19.3, 29.4, 35.3, 109.6, 112.4, 119.6, 125.8, 126.0, 126.4, 126.5, 127.0, 128.9, 129.2, 129.3, 130.46, 130.47, 130.54, 130.6, 131.9, 133.5, 133.8, 133.9, 134.09, 134.13, 135.5, 135.6, 136.4, 141.36, 141.38, 144.9, 145.0, 160.3, 160.4 ppm. HRMS (ESI) calcd for [C₄₇H₄₂N]⁺ [M-BF₄]⁺ 620.3312, found 620.3307.

2-tert-Butyl-5,6,10,11-tetram-tolylquinolizino[3,4,5,6-ija]quinolinium

tetrafluoroborate (4c): Product 4c was prepared according to the general procedure as a yellow-green solid (60.1 mg, 85 %). ¹H NMR (400 MHz, DMSO-d₆): $\delta = \delta = 1.13$ (s, 9H), 2.30 (s, 6H), 2.31 (s, 6H), 7.11-7.26 (m, 12H), 7.32-7.40 (m, 4H), 7.84-7.86 (m, 4H), 8.17 (t, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO- $d\delta$): $\delta = 20.9, 20.9,$ 20.98, 21.01, 29.4, 35.5, 120.3, 126.3, 126.4, 126.8, 127.3, 127.37, 127.39, 128.61, 128.63, 128.7, 129.2, 129.25, 129.34, 129.4, 129.5, 129.7, 130.7, 130.8, 131.2, 134.39, 134.44, 134.66, 134.69, 134.8, 134.85, 137.91, 137.93, 138.1, 141.86, 141.88, 144.66, 144.72, 159.7 ppm. HRMS (ESI) calcd for [C₄₇H₄₂N]⁺ [M-BF₄]⁺ 620.3312, found 620.3311.

2-(tert-Butyl)-4,5,9,10-tetra-p-tolylquinolizino[3,4,5,6-ija]quinolin-11-ium

tetrafluoroborate (4d): Product 4d was prepared according to the general procedure as a yellow-green solid (61.4 mg, 87 %). ¹H NMR (400 MHz, DMSO- d_{δ}): $\delta = 1.12$ (s, 9H), 2.34 (s, 6H), 2.35 (s, 6H), 7.21 – 7.23 (m, 4H), 7.27 – 7.32 (m, 12H), 7.81 – 7.82 (m, 4H), 8.13 (t, J = 8.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 20.90$, 20.93, 29.5, 35.5, 120.2, 126.7, 127.6, 129.1, 129.4, 129.5, 129.6, 130.2, 131.3, 132.0, 132.1, 134.5, 137.9, 138.0, 142.1, 144.8, 159.7 ppm. HRMS (ESI) calcd for [C₄₇H₄₂N]⁺ [M-BF₄]⁺ 620.3312, found 620.3308.

2-(tert-Butyl)-4,5,9,10-tetrakis(4-(tert-butyl)phenyl)quinolizino[3,4,5,6-

ija]quinolin-11-ium tetrafluoroborate (4e): Product 4e was prepared according to the general procedure as a yellow solid (78.8 mg, 90 %). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 1.13$ (s, 9H), 1.27 (s, 36H), 7.22 (d, J = 8.0 Hz, 4H), 7.28 (d, J = 8.0 Hz, 4H), 7.43 -7.47 (m, 8H), 7.87 (s, 2H), 7.92 (d, J = 8.0 Hz, 2H), 8.20 (t, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 29.4$, 30.92, 30.93, 34.41, 34.44, 35.4, 120.1, 125.3, 125.4, 126.67, 126.68, 127.4, 129.0, 130.1, 131.3, 131.9, 132.1, 134.7, 141.9, 145.0, 150.9, 151.1, 159.7 ppm. HRMS (ESI) calcd for $[C_{59}H_{66}N]^+$ [M-BF₄]⁺ 788.5190, found 788.5184.

2-(*tert***-Butyl)-4,5,9,10-tetrakis(4-methoxyphenyl)quinolizino[3,4,5,6-***ija***]quinolin-11-ium tetrafluoroborate (4f):** Product **4f** was prepared according to the general procedure as a green solid (71 mg, 92 %). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.16 (s, 9H), 3.79 (s, 6H), 3.80 (s, 6H), 7.02 – 7.06 (m, 8H), 7.25 (d, *J* = 8.8 Hz, 4H), 7.31 (d, *J* = 8.8 Hz, 4H), 7.87 (s, 3H), 7.89 (s, 1H), 8.15 (t, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 29.5, 35.5, 55.16, 55.18, 114.25, 114.31, 120.1, 126.7, 126.9, 127.1, 127.8, 129.6, 130.7, 131.3, 131.7, 134.5, 142.3, 144.9, 159.0, 159.1, 159.7 ppm. HRMS (ESI) calcd for [C₄₇H₄₂NO₄]⁺ [M-BF₄]⁺ 684.3108, found 684.3099.

2-(*tert*-Butyl)-4,5,9,10-tetrakis(4-chlorophenyl)quinolizino[3,4,5,6-*ija*]quinolin-11-ium tetrafluoroborate (4g): Product 4g was prepared according to the general procedure as a yellow solid (78.8 mg, 90 %). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.18 (s, 9H), 7.38 (d, *J* = 8.0 Hz, 4H), 7.46 (d, *J* = 8.4 Hz, 4H), 7.59 (t, *J* = 8.0 Hz, 8H), 7.84 (s, 2H), 7.89 (d, *J* = 8.0 Hz, 2H), 8.19 (t, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 29.5, 35.7, 120.5, 127.0, 127.2, 129.1, 129.2, 130.1, 131.2, 131.4, 132.3, 133.3, 133.5, 133.59, 133.61, 133.8, 141.6, 144.1, 160.6 ppm. HRMS (ESI) calcd for [C₄₇H₃₀Cl₄N]⁺ [M-BF₄]⁺ 700.1127, found 700.1134.

2-tert-Butyl-5,6,10,11-tetrakis(4-(trifluoromethyl)phenyl)quinolizino[3,4,5,6-

ija]quinolinium tetrafluoroborate (4h): Product 4h was prepared according to the general procedure as a green solid (85.8 mg, 93 %). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.16 (s, 9H), 7.62 (d, *J* = 8.0 Hz, 4H), 7.70 (d, *J* = 7.6 Hz, 4H), 7.80 (s, 2H), 7.87 – 7.91 (m, 10H), 8.22 (t, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 29.35, 35.71, 120.67, 123.89 (q, *J*_{C-F} = 272.1 Hz), 123.92 (q, *J*_{C-F} = 272.4 Hz), 125.90 (q, *J*_{C-F} = 3.8 Hz), 125.98 (q, *J*_{C-F} = 3.5 Hz), 126.75, 127.43, 129.28 (q, *J*_{C-F} = 32.1 Hz), 129.45 (q, *J*_{C-F} = 32.1 Hz), 130.40, 131.49, 131.53, 133.44, 138.72, 141.31, 143.90, 160.89 ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ = -61.24 (d, *J* = 4.0 Hz, 4H), -148.34 (s) ppm. HRMS (ESI) calcd for [C₄₇H₃₀NF₁₂]⁺ [M-BF₄]⁺ 836.2181, found 836.2179.

4,5,9,10-Tetrakis(4-acetylphenyl)-2-(tert-butyl)quinolizino[3,4,5,6-ija]quinolin-

11-ium tetrafluoroborate (4i): Product **4i** was prepared according to the general procedure as a yellow solid (68.8 mg, 84%). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 1.13$ (s, 9H), 2.60 (s, 6H), 2.61 (s, 6H), 7.55 (d, J = 8.4 Hz, 4H), 7.62 (d, J = 8.4 Hz, 4H), 7.79 (s, 2H), 7.82 (d, J = 8.0 Hz, 2H), 8.05 – 8.08 (m, 8H), 8.18 (t, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 26.85$, 26.88, 29.4, 35.7, 120.6, 126.9, 127.2, 128.8, 128.9, 129.8, 130.2, 130.9, 131.4, 133.6, 136.7, 136.8, 139.0, 139.2, 141.4, 144.1, 160.6, 197.5, 197.6 ppm. HRMS (ESI) calcd for $[C_{51}H_{42}NO_4]^+$ [M-BF₄]⁺ 732.3108, found 732.3093.

2-(*tert***-Butyl)-4,5,9,10-tetrakis(3-cyanophenyl)quinolizino[3,4,5,6-***ija***]quinolin-11ium tetrafluoroborate (4j): Product 4j was prepared according to the general procedure as a yellow solid (61.6 mg, 82 %). ¹H NMR (400 MHz, DMSO-***d***₆): \delta = 1.19 (s, 9H), 7.61 – 7.82 (m, 11H), 7.91 – 8.06 (m, 9H), 8.22 (t,** *J* **= 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-***d***₆): \delta = 29.4, 35.9, 112.06, 112.14, 118.2, 121.0, 126.7, 127.7, 130.4, 130.47, 130.53, 131.5, 132.9, 133.1, 133.2, 133.95, 133.98, 134.2, 135.1, 135.2, 135.3, 135.4, 135.6, 141.2, 143.6 ppm. HRMS (ESI) calcd for [C₄₇H₃₀N₅]⁺ [M-BF₄]⁺ 664.2496, found 664.2499.**

2-(*tert*-Butyl)-4,5,9,10-tetra(naphthalen-1-yl)quinolizino[3,4,5,6-*ija*]quinolin-11ium tetrafluoroborate (4k): Product 4k was prepared according to the general procedure as a yellow solid (63.8 mg, 75 %). ¹H NMR (400 MHz, DMSO- d_6): $\delta = 0.68$ (s, 9H), 7.14 – 7.30 (m, 8H), 7.50 – 7.74 (m, 11H), 7.80 – 8.02 (m, 14H) ppm. HRMS (ESI) calcd for [C₅₉H₄₂N]⁺ [M-BF₄]⁺ 764.3312, found 764.3302.

2-(*tert*-butyl)-4,5,9,10-tetrapropylquinolizino[3,4,5,6-*ija*]quinolin-11-ium (41): Product 4I was prepared according to the general procedure as a yellow solid (39.6 mg, 77 %). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.236 - 1.244$ (m, 12H), 1.62 (s, 9H), 1.78 - 1.84 (m, 8H), 3.23 - 3.29 (m, 8H), 8.31 (t, J = 8.0 Hz, 1H), 8.43 - 8.47 (m, 4H), ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.7$, 14.8, 22.7, 23.0, 30.6, 31.8, 32.0, 36.5, 117.8, 124.3, 126.8, 129.9, 130.4, 132.1, 140.9, 144.6, 160.8 ppm. HRMS (ESI) calcd for [C₃₁H₄₂N]⁺ [M-BF₄]⁺ 428.3312, found 428.3310.

4,5,9,10-Tetraphenylquinolizino[**3,4,5,6**-*ija*]**quinolin-11-ium** tetrafluoroborate (**4m**): Product **4m** was prepared according to the general procedure as a yellow solid (48.2 mg, 81 %). ¹H NMR (400 MHz, DMSO-*d6*): $\delta = 7.32 - 7.34$ (m, 4H), 7.39 - 7.46 (m, 16H), 7.88 (d, J = 8.0 Hz, 2H), 8.02 (d, J = 8.0 Hz, 2H), 8.21 (t, J = 8.0 Hz, 1H), 8.55 (t, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d6*): $\delta = 124.0$, 126.6, 127.7, 128.6, 128.7, 128.8, 128.9, 129.2, 129.9, 130.3, 131.3, 131.8, 134.8, 134.9, 137.7, 141.9, 144.8 ppm. HRMS (ESI) calcd for $[C_{43}H_{34}N]^+$ [M-BF₄]⁺ 564.2686, found 564.2682.

2-Methoxy-4,5,9,10-tetraphenylquinolizino[3,4,5,6-ija]quinolin-11-ium

tetrafluoroborate (4n): Product **4n** was prepared according to the general procedure as a grey solid (48.1 mg, 77 %). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 3.34 - 4.32$ (m, 3H), 7.21 - 7.27 (m, 3H), 7.32 - 7.33 (m, 4H), 7.38 - 7.45 (m, 15H), 7.77 (d, J = 8.0Hz, 2H), 8.09 (t, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 56.9$, 109.0, 126.5, 127.17, 127.18, 128.5, 128.7, 128.8, 128.9, 129.2, 130.3, 131.2, 133.8, 134.6, 134.9, 144.4, 144.5, 163.6 ppm. HRMS (ESI) calcd for $[C_{40}H_{28}NO]^+$ [M-BF₄]⁺ 548.2165, found 548.2169.

2-(*tert*-Butyl)-7-methoxy-4,5,9,10-tetraphenylquinolizino[3,4,5,6-*ija*]quinolin-11ium tetrafluoroborate (40): Product 40 was prepared according to the general procedure as a yellow solid (50.4 mg, 74 %). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.17$ (s, 9 H), 3.70 (s, 3H), 7.28 – 7.37 (m, 22H), 7.93 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 30.1$, 35.9, 55.9, 112.6, 121.7, 128.65, 128.74, 128.9, 129.0, 129.6, 130.0, 130.7, 131.8, 135.2, 135.3, 135.5, 141.3, 144.9, 159.2, 159.5 ppm. HRMS (ESI) calcd for [C₄₄H₃₆NO]⁺ [M-BF₄]⁺ 594.2791, found 594.2794.

1-Methyl-4,5,9,10-tetraphenylquinolizino[3,4,5,6-ija]quinolin-11-ium

tetrafluoroborate (4p): Product **4p** was prepared according to the general procedure as a green solid (36.6 mg, 70 %). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.56 (s, 3H), 7.30 – 7.47 (m, 20H), 7.76 (s, 2H), 7.82 (d, *J* = 8.0 Hz, 2H), 8.16 (t, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 21.6, 124.1, 126.7, 127.3, 128.5, 128.69, 128.72, 128.8, 129.2, 129.6, 130.4, 131.5, 134.3, 134.7, 135.0, 141.5, 144.8, 149.7 ppm. HRMS (ESI) calcd for [C₄₄H₃₆N]⁺ [M-BF₄]⁺ 522.2216, found 522.2208.

2-Cyano-4,5,9,10-tetraphenylquinolizino[3,4,5,6-*ija*]quinolin-11-ium

tetrafluoroborate (4q): Product 4q was prepared according to the general procedure as a reddish-brown solid (37.9 mg, 61 %). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.32 –

7.33 (m, 4H), 7.37 – 7.46 (m, 16H), 8.02 (d, J = 7.6 Hz, 2H), 8.33-8.39 (m, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 115.4, 118.9, 125.5, 127.6, 128.0, 128.8, 128.98, 129.03, 129.1, 130.5, 131.2, 131.84, 133.84, 134.5, 135.0, 142.2, 146.8 ppm. HRMS (ESI) calcd for [C₄₀H₂₅N₂]⁺ [M-BF₄]⁺ 533.2012, found 533.2007.

2-(tert-Butyl)-7-(methoxycarbonyl)-4,5,9,10-tetra-o-tolylquinolizino[3,4,5,6-

ija]quinolin-11-ium tetrafluoroborate (4r): Product 4r was prepared according to the general procedure as a greenwish solid (49.9 mg, 64 %). ¹H NMR (400 MHz, DMSO*d*₆): $\delta = 1.13$ (s, 9H), 2.03 – 2.31 (m, 12H), 3.79 (s, 3H), 7.26 – 7.43 (m, 16H), 7.72 (s, 2H), 8.13 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 19.2$, 19.3, 29.4, 35.5, 53.2, 109.6, 112.4, 120.1, 125.8, 126.0, 126.1, 127.5, 129.2, 129.4, 130.6, 130.7, 131.8, 133.2, 133.4, 135.1, 135.47, 135.51, 136.3, 141.8, 144.9, 164.6, 192.5 ppm. HRMS (ESI) calcd for [C₄₉H₄₄NO₂]⁺ [M-BF₄]⁺ 678.3367, found 678.3360.

2-(tert-Butyl)-4,5,9,10-tetrakis(4-(diphenylamino)phenyl)quinolizino[3,4,5,6-

ija]quinolin-11-ium tetrafluoroborate (4s): Product 4s was prepared according to the general procedure as a crimson solid (121.2 mg, 92 %). ¹H NMR (400 MHz, DMSO-*d₆*) $\delta = 1.28$ (s, 9H), 7.05 – 7.12 (m, 32H), 7.21 – 7.25 (m, 8H), 7.32 – 7.36 (m, 16H), 8.07 (s, 2H), 8.17 (d, *J* = 8 Hz, 2H), 8.29 (t, *J* = 8 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d₆*): $\delta = 29.5$, 35.6, 120.16, 122.58, 123.22, 123.23, 123.5, 123.6, 124.0, 124.2, 126.9, 127.3, 128.6, 128.8, 129.69, 129.70, 130.8, 131.5, 131.8, 134.5, 141.9, 144.8, 146.8, 146.9, 147.35, 147.38, 159.85 ppm. HRMS (ESI) calcd for [C₉₁H₇₁N₅]⁺ [M-BF₄+H]⁺ 1233.5704, found 1233.5708.

Compound	λ_{max}	λ_{ex}	λ_{em}	$arPsi_{ m F}$
4 a	354	356	468	0.76
4b	353	354	458	0.79
4c	355	356	472	0.75
4d	356	356	475	0.62
4e	358	359	476	0.91
4 f	357	353	489	0.78
4 g	354	351	471	0.61
4h	351	352	464	0.28
4i	353	355	469	0.68
4 j	351	352	463	0.68
4 k	352	353	467	0.59
41	354	351	451	0.48
4m	355	355	481	0.58
4n	355	355	452	0.66
40	316	362	460	0.59
4 p	355	355	468	0.70
4q	365	360	536	0.36
4r	354	355	460	0.77
4s	438	489	614	0.26

VII. Photophysical spectra of 12-azapyrene derivatives in CH₂Cl₂

Table S2 Photophysical data of 12-azapyrene derivatives in CH_2Cl_2

VIII. Single crystal X-Ray structure

Figure S1 X-Ray single crystal structure of 4s

XI. References

- (1) (a) M. J. Mio, L. C. Kople, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois,
- C. J. Markworth, and P. A. Grieco, Org. Lett., 2002, 4, 3199; b) K. Park, G. Bae, J.
- Moon, J. Choe, K. H. Song, and S. Lee, J. Org. Chem., 2010, 75, 6244.
- (2) C. White, A. Yates, and P. M. Maitlis, Inorg. Synth., 1992, 29, 228.
- (3) T. Lv, Z. Wang, J. You, J. Lan, and G Gao, J. Org. Chem., 2013, 78, 5723

IX. Copies of NMR Spectra for Compounds

¹H NMR spectra of **1a**:

¹⁹F NMR spectra of **1a**:

¹H NMR spectra of **1a'**:

¹⁹F NMR spectra of **1a'**:

¹H NMR spectra of **1b**:

¹³C NMR spectra of **1b**:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹⁹F NMR spectra of **1b**:

¹⁹F NMR spectra of **1c**:

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -140 -160 -180 -200 fl (ppm) ¹H NMR spectra of **1d**:

¹⁹F NMR spectra of **1d**:

¹³C NMR spectra of **1e**:

185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 fl (ppm)

-+48.261

¹⁹F NMR spectra of **1e**:

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -140 -160 -180 -200 fl (ppm)

¹⁹F NMR spectra of **1g**:

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -140 -160 -180 -200 fl (ppm)

¹H NMR spectra of **3a**:

¹³C NMR spectra of **3a**:

¹⁹F NMR spectra of **3a**:

14.0

13.0

12.0

11.0

10.0

7.0 6.0 f1 (ppm)

4.0

5.0

3.0

2.0

1.0

0.0

8.0

9.0

¹³C NMR spectra of **4a**:

---148.340

¹⁹F NMR spectra of **4a**:

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -140 -160 -180 -200 f1 (ppm) ¹H NMR spectra of **4a'**:

¹³C NMR spectra of **4a'**:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹⁹F NMR spectra of **4a'**:

-140

-160

-180

-200

¹H NMR spectra of **4b**:

¹³C NMR spectra of **4b**:

¹H NMR spectra of **4c**:

¹H NMR spectra of **4d**:

¹³C NMR spectra of **4d**:

¹³C NMR spectra of **4e**:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR spectra of **4f**:

¹³C NMR spectra of **4f**:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR spectra of **4g**:

¹³C NMR spectra of **4g**:

^{230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

¹H NMR spectra of **4h**:

¹⁹F NMR spectra of **4h**:

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -140 -160 -180 -200 f1 (ppm)

¹³C NMR spectra of **4i**:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectra of **4k**:

¹H NMR spectra of **4**I:

S49

¹H NMR spectra of **4m**:

¹³C NMR spectra of **4m**:

¹H NMR spectra of **4n**:

¹³C NMR spectra of **4n**:

¹H NMR spectra of **40**:

¹³C NMR spectra of **40**:

¹H NMR spectra of **4p**:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR spectra of **4q**:

¹³C NMR spectra of **4q**:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR spectra of **4r**:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectra of **4s**:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)