Supporting Information *for*

Trifluoromethylation of (Hetero)Aryl Iodides and Bromides with Copper (I) Chlorodifluoroacetate Complexes

Xiaoxi Lin,[†] Zhengyu Li,[†] Xiaoyan Han,^{*,‡} and Zhiqiang Weng^{*,†,§}

[†]State Key Laboratory of Photocatalysis on Energy and Environment, College of

Chemistry, Fuzhou University, Fujian 350108, China. [‡]Testing and Analysis Center,

Soochow University, Suzhou 215123, China. [§]State Key Laboratory of Structural

Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China.

Corresponding authors: <u>hanxiaoyan@suda.edu.cn</u> (X. H); <u>zweng@fzu.edu.cn</u> (Z. W)

Table of Contents

Data for Compounds 3a-3r , 5a-5o , and 7	2
Generation of L _n CuCF ₃ species	16
Copies of NMR spectra	

Data for Compounds 3a-3r, 5a-5o, and 7.

4-Trifluoromethyl-1,1'-biphenyl (3a)^[1]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3a** was produced in 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.67 (m, 4H), 7.66 – 7.60 (m, 2H), 7.54 – 7.44 (m, 2H), 7.46 – 7.30 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 144.7 (q, *J* = 1.1 Hz), 139.8 (s), 129.3 (q, *J* = 32.6 Hz), 129.0 (s), 128.2 (s), 127.4 (s), 127.3 (s), 125.7 (q, *J* = 3.8 Hz), 124.3 (q, *J* = 271.8 Hz). GC-MS m/z 221 (M⁺-H).

4-(Trifluoromethyl)benzaldehyde (3b)^[2]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3b** was produced in 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 2H), 7.84 (d, *J* = 8.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 191.1 (s), 138.7 (s), 135.6 (q, *J* = 32.9 Hz), 129.9 (s), 126.1 (q, *J* = 3.7 Hz), 123.4 (q, *J* = 273.9 Hz). GC-MS m/z 173 (M⁺-H).

1-(4-Trifluoromethyl)phenyl)ethanone (3c)^[1]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3c** was produced in 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.2 Hz, 2H), 7.76 (d, *J* = 8.2 Hz, 2H), 2.67 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 197.0 (s), 139.7 (q, *J* = 1.3 Hz), 134.4 (q, *J* = 32.8 Hz), 128.6 (s), 125.7 (q, *J* = 3.8 Hz), 123.6 (q, *J* = 273.7 Hz), 26.8 (s). GC-MS m/z 188 (M⁺).

3-(Trifluoromethyl)benzaldehyde (3d)^[3]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3d** was produced in 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 8.16 (s, 1H), 8.09 (d, *J* = 7.6 Hz, 1H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.70 (t, *J* = 7.7 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 190.7 (s), 136.8 (s), 132.6 (q, *J* = 1.2 Hz), 131.8 (q, *J* = 33.6 Hz), 130.8 (q, *J* = 3.6 Hz), 129.8 (s), 126.4 (q, *J* = 3.7 Hz), 123.5 (q, *J* = 273.5 Hz). GC-MS m/z 173 (M⁺-H).

Methyl 4-(trifluoromethyl)benzoate (3e)^[1]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3e** was produced in 99% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.7 Hz, 2H), 7.71 (d, *J* = 7.7 Hz, 2H), 3.96 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 165.9 (s), 134.4 (q, *J* = 32.6 Hz), 133.3 (s), 130.0 (s), 125.4 (q, *J* = 3.7 Hz), 123.6 (q, *J* = 273.7 Hz), 52.5 (s). GC-MS m/z 203 (M⁺-H).

1,4-Bis(trifluoromethyl)benzene (3f)^[4]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3f** was produced in 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.3 (s, 6F). ¹³C NMR (101 MHz, CDCl₃) δ 134.0 (q, *J* = 33.3 Hz), 126.0 – 125.7 (m), 123.4 (q, *J* = 273.7 Hz). GC-MS m/z 214 (M⁺).

1-Nitro-4-(trifluoromethyl)benzene (3g)^[2]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3g** was produced in 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 8.7 Hz, 2H), 7.87 (d, *J* = 8.7 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 150.0 (s), 136.1 (q, *J* = 33.3 Hz), 126.9 – 126.6 (m), 124.1 (s), 123.0 (q, *J* = 274.1 Hz). GC-MS m/z 191 (M⁺).

1-Nitro-3-(trifluoromethyl)benzene (3h)^[1]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3h** was produced in 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 8.46 (d, *J* = 8.3 Hz, 1H), 8.00 (d, *J* = 7.7 Hz, 1H), 7.77 (t, *J* = 8.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 148.3 (s), 132.3 (q, *J* = 33.8 Hz), 131.1 (q, *J* = 3.5 Hz), 130.4 (s), 126.7 (s), 122.8 (q, *J* = 273.8 Hz), 120.8 (q, *J* = 3.9 Hz). GC-MS m/z 191 (M⁺).

2-(Trifluoromethyl)benzonitrile (3i)^[1]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3i** was produced in 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.83 (m, 2H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.75 – 7.69 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 134.7 (s), 132.9 (q, *J* = 32.9 Hz), 132.9 (s), 132.2 (q, *J* = 1.0 Hz), 126.7 (q, *J* = 4.7 Hz), 122.4 (q, *J* = 274.9 Hz), 115.4 (s), 110.3 (q, *J* = 2.2 Hz). GC-MS m/z 171 (M⁺).

3-(Trifluoromethyl)benzonitrile (3j)^[5]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3j** was produced in 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.92 – 7.87 (bs, 2H), 7.68 (t, J = 7.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 135.3 (s), 132.0 (q, J = 33.7 Hz), 130.0 (s), 129.5 (q, J = 3.6 Hz), 129.0 (q, J = 3.9 Hz), 122.9 (t, J = 272.7 Hz), 117.3 (s), 113.5 (s). GC-MS m/z 171 (M⁺).

4-(Trifluoromethyl)benzonitrile (3k)^[2]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3k** was produced in 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.6 Hz, 2H), 7.79 (d, *J* = 8.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 134.6 (d, *J* = 33.6 Hz), 132.7 (s), 126.2 (t, *J* = 3.7 Hz), 123.1 (d, *J* = 274.0 Hz), 117.4 (s), 116.1 (q, *J* = 1.4 Hz). GC-MS m/z 171 (M⁺).

1-Methoxy-4-(trifluoromethyl)benzene (3l)^[2]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **31** was produced in 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.6 Hz, 2H), 6.99 (d, *J* = 8.6 Hz, 2H), 3.88 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.4 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 162.0 (s), 126.9 (q, *J* = 3.7 Hz), 124.5 (q, *J* = 270.9 Hz), 122.8 (q, *J* = 32.5 Hz), 113.9 (s), 55.4 (s). GC-MS m/z 176 (M⁺).

1-Bromo-4-(trifluoromethyl)benzene (3m)^[2]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3m** was produced in 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.6 Hz, 2H), 7.50 (d, *J* = 8.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 132.1 (s), 129.7 (s), 126.9 (q, *J* = 3.8 Hz), 126.5 (q, *J* = 1.8 Hz), 123.9 (q, *J* = 273.1 Hz). GC-MS m/z 225 (M⁺).

1-Chloro-2-(trifluoromethyl)benzene (3n)^[6]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3n** was produced in 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.0 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.38 – 7.32 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 132.9 (q, *J* = 1.0 Hz), 132.4 (q, *J* = 1.9 Hz), 131.4 (s), 128.5 (q, *J* = 31.5 Hz), 127.5 (q, *J* = 5.5 Hz), 126.6 (s), 122. 9 (d, *J* = 274.1 Hz). GC-MS m/z 180 (M⁺).

1-Chloro-4-(trifluoromethyl)benzene (30)^[7]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **30** was produced in 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 138.1 (q, *J* = 1.7 Hz), 129.1 (s), 129.0 (q, *J* = 32.8 Hz), 126.7 (q, *J* = 3.8 Hz), 123.8 (d, *J* = 270.3 Hz). GC-MS m/z 180 (M⁺).

1,2-Dichloro-4-(trifluoromethyl)benzene (3p)^[8]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3p** was produced in 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.59 (d, *J* = 8.6 Hz, 1H), 7.50 (d, *J* = 8.1 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 136.6 (q, *J* = 1.1 Hz), 133.5 (s), 131.0 (s), 130.4 (q, *J* = 33.6 Hz), 127.6 (q, *J* = 3.9 Hz), 124.5 (q, *J* = 3.6 Hz), 123.0 (q, *J* = 273.9 Hz). GC-MS m/z 214 (M⁺-H).

1-Fluoro-4-(trifluoromethyl)benzene (3q)^[9]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3q** was produced in 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, *J* = 8.3, 5.2 Hz, 2H), 7.16 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.1 (s, 3F), -107.6 – -107.9 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 164.6 (d, *J* = 248.4), 127.6 (m), 126.8 (qd, *J* = 33.0, 3.4 Hz), 123.8 (q, *J* = 272.7 Hz), 115.9 (d, *J* = 22.4 Hz). GC-MS m/z 163 (M⁺-H).

1-(Trifluoromethyl)naphthalene (3r)^[1]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **3r** was produced in 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.7 Hz, 1H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.90 (d, *J* = 7.4 Hz, 1H), 7.64 – 7.53 (m, 2H), 7.54 (t, *J* = 7.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 134.0 (s), 132.8 (s), 129.0 (s), 128.8 (s), 127.7 (s), 126.6 (s), 126.1 (q, *J* = 30.1 Hz), 124.8 (q, *J* = 274.5 Hz), 124.7 (q, *J* = 6.0 Hz), 124.3 (q, *J* = 2.4 Hz), 124.2 (s). GC-MS m/z 196 (M⁺).

2-(Trifluoromethyl)pyridine (5a)^[10]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5a** was produced in 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 4.4 Hz, 1H), 7.89 (t, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.54 – 7.48 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 150.0 (s), 148.2 (s), 137.4 (s), 126.4 (q, *J* = 1.0 Hz), 121.5 (q, *J* = 275.0 Hz), 120.4 (q, *J* = 2.7 Hz). GC-MS m/z 147 (M⁺).

6-(Trifluoromethyl)nicotinaldehyde (5b)^[11]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5b** was

produced in 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.24 (s, 1H), 9.22 (s, 1H), 8.39 (dd, *J* = 8.1, 1.9 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 189.3 (s), 152.3 (q, *J* = 35.4 Hz), 151.7 (s), 137.7 (s), 133.1 (q, *J* = 0.9 Hz), 121.0 (q, *J* = 2.7 Hz), 120.9 (q, *J* = 275.8 Hz). HRMS (EI) calcd for C₇H₄F₃NO : 175.0245; Found: 175.0246.

Methyl 6-(trifluoromethyl)picolinate (5c)^[12]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5c** was produced in 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 7.8 Hz, 1H), 7.98 (t, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 3.91 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 164.7 (s), 148.6 (s), 148.5 (q, *J* = 35.5 Hz), 138.8 (s), 127.6 (q, *J* = 1.0 Hz), 123.5 (q, *J* = 2.6 Hz), 121.0 (q, *J* = 274.8 Hz), 53.3 (s). GC-MS m/z 205 (M⁺).

1-(6-(Trifluoromethyl)pyridin-3-yl)ethanone (5d)^[13]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5d** was produced in 72% yield. ¹H NMR (400 MHz,) δ 9.27 (s, 1H), 8.43 (d, *J* = 8.2 Hz, 1H), 7.84 (d, *J* = 8.2 Hz, 1H), 2.72 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 195.4 (s), 151.3 (q, *J* = 35.3 Hz), 149.9 (s), 137.2 (s), 134.2 (q, *J* = 0.9 Hz), 121.1 (q, *J* = 275.6 Hz), 120.5 (q, *J* = 2.7 Hz), 27.0 (s). GC-MS m/z 189 (M⁺).

5-Nitro-2-(trifluoromethyl)pyridine (5e) [12]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5e** was produced in 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.52 (d, *J* = 2.3 Hz, 1H), 8.72 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.97 (d, *J* = 8.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 152.6 (q, *J* = 36.0 Hz), 145.5 (s), 145.4 (s), 133.0 (s), 121.2 (q, *J* = 2.6 Hz), 120.5 (q, *J* = 276.0 Hz). GC-MS m/z 192 (M⁺).

3-Chloro-2-(trifluoromethyl)pyridine (5f)^[14]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5f** was produced in 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 3.7 Hz, 1H), 7.91 (d, *J* = 12.7 Hz, 1H), 7.49 (dd, *J* = 8.2, 4.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 146.7 (s), 144.8 (q, *J* = 34.3 Hz), 139.6 (s), 130.6 (s), 127.3 (s), 121.0 (q, *J* = 276.2 Hz). GC-MS m/z 181 (M⁺-H).

5-Bromo-2-(trifluoromethyl)pyridine (5g)^[15]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5g** was produced in 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, *J* = 1.7 Hz, 1H), 8.05 (dd, *J* = 8.3, 1.7 Hz 1H), 7.61 (d, *J* = 8.3 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 151.4 (s), 146.7 (q, *J* = 35.7 Hz), 140.1 (s), 124.0 (q, *J* = 1.2 Hz), 121.7 (q, *J* = 2.7 Hz), 121.3 (q, *J* = 275.1 Hz). GC-MS m/z 226 (M⁺).

3-(Trifluoromethyl)pyridine (5h)^[9]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5h** was produced in 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.91 (s, 1H), 8.82 (d, *J* = 4.8 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.50 – 7.40 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 153.0 (q, *J* = 1.5 Hz), 146.7 (q, *J* = 4.1 Hz), 133.0 (q, *J* = 3.6 Hz), 126.8 (q, *J* = 33.0 Hz), 123.4 (q, *J* = 273.4 Hz), 123.3 (s). GC-MS m/z 147 (M⁺).

2-Chloro-3-(trifluoromethyl)pyridine (5i)^[15]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5i** was produced in 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, *J* = 4.8 Hz, 1H), 8.04 (dd, *J* = 7.8, 2.0 Hz, 1H), 7.45 – 7.35 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 152.3 (q, *J* = 1.2 Hz), 149.1 (q, *J* = 1.6 Hz), 136.6 (q, *J* = 5.0 Hz), 125.5 (q, *J* = 33.4 Hz), 122.1 (q, *J* = 273.8 Hz), 122.0 (s). GC-MS m/z 182 (M⁺+H).

2-Chloro-4-(trifluoromethyl)pyridine (5j)^[15]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5j** was produced in 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 5.1 Hz, 1H), 7.58 (s, 1H), 7.46 (d, J = 5.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 152.7 (s), 150.9 (s), 141.0 (q, *J* = 34.8 Hz), 122.0 (q, *J* = 274.7 Hz), 120.6 (q, *J* = 3.9 Hz), 118.1 (q, *J* = 3.4 Hz). GC-MS m/z 182 (M⁺+H).

2-Chloro-4-(trifluoromethyl)pyridine (5k)^[3]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5k** was produced in 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 8.5 Hz, 1H), 8.27 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.2 Hz, 1H), 7.86 (ddd, *J* = 8.5, 6.9, 1.5 Hz, 1H), 7.79 – 7.75 (d, *J* = 8.5 Hz, 1H), 7.71 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.5 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 147.9 (q, *J* = 34.7 Hz), 147.2 (s), 138.1 (s), 130.8 (s), 130.1 (s), 128.9 (q, *J* = 0.8 Hz), 128.6 (s), 127.7 (s), 121.7 (q, *J* = 276.1 Hz), 116.8 (d, *J* = 2.2 Hz). GC-MS m/z 197 (M⁺).

2-(Trifluoromethyl)pyrazine (5l)^[10]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **51** was produced in 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.02 (s, 1H), 8.86 (d, *J* = 2.4 Hz, 1H), 8.77 – 8.73 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 147.8 (q, *J* = 1.3 Hz), 147.7 (q, *J* = 1.7 Hz), 144.4 (s), 141.9 (q, *J* = 3.2 Hz), 121.0 (q, *J* = 275.4 Hz). GC-MS m/z 149 (M⁺+H).

2-(Trifluoromethyl)quinoxaline (5m)^[12]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5m** was produced in 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.30 – 8.20 (m, 2H), 8.03 – 7.87 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.0 (s). ¹³C NMR (101 MHz, CDCl₃) δ 143.7 (q, J = 1.0 Hz), 142.8 (q, J = 35.4 Hz), 141.0 – 140.7 (m), 132.3 (s), 131.5 (s), 130.0 (s), 129.5 (s), 121.1 (q, J = 276.5 Hz). GC-MS m/z 198 (M⁺).

2-(Trifluoromethyl)pyrimidine (5n)^[16]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **5n** was produced in 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, *J* = 4.9 Hz, 2H), 7.56 (t, *J* = 4.7 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -70.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 158.0 (s), 157.0 (q, *J* = 37.0 Hz), 123.2 (s) , 119.4 (q, *J* = 276.6 Hz). GC-MS m/z 148 (M⁺).

2-(Trifluoromethyl)thiophene (50)^[17]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **50** was produced in 51% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 5.0, 1.3 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.13 – 7.05 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -54.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 131.4 (q, J = 38.3 Hz), 128.9 (q, J = 1.3 Hz), 128.5 (q, J =3.7 Hz), 126.8 (s), 122.6 (d, J = 269.4 Hz). GC-MS m/z 151 (M⁺-H).

5-(Trifluoromethyl)-2*H*-[1,2'-bipyridin]-2-one (7)^[18]

Quantitative ¹⁹F NMR analysis of the reaction mixture indicated that **7** was produced in 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 5.6 Hz, 1H), 8.43 – 8.32 (m, 1H), 8.03 – 7.86 (m, 2H), 7.54 (d, *J* = 9.6 Hz, 1H), 7.44 – 7.36 (m, 1H), 6.75 (d, *J* = 8.3 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.4 (s), 150.8 (s), 149.1 (s), 138.1 (s), 136.0 (q, *J* = 5.7 Hz), 135.5 (q, *J* = 2.3 Hz), 123.8 (s), 123.3 (q, *J* = 269.8 Hz), 122.7 (s), 121.1 (s), 110.4 (q, *J* = 35.0 Hz). GC-MS m/z 240 (M⁺).

References:

- [1] J. Zheng, J.-H. Lin, X.-Y. Deng, J.-C. Xiao, Org. Lett. 2015, 17, 532-535.
- [2] X. Zhang, J. Wang, Z. Wan, Org. Lett. 2015, 17, 2086-2089.
- [3] A. Lishchynskyi, M. A. Novikov, E. Martin, E. C. Escudero-Adán, P. Novák,
 V. V. Grushin, J. Org. Chem. 2013, 78, 11126-11146.
- [4] Y. Ye, M. S. Sanford, J. Am. Chem. Soc. 2012, 134, 9034-9037.
- [5] P. Anbarasan, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 519-522.
- [6] Y. Li, T. Chen, H. Wang, R. Zhang, K. Jin, X. Wang, C. Duan, Synlett 2011, 1713-1716.
- [7] aH. Wu, J. Hynes Jr, Org. Lett. 2010, 12, 1192-1195; bX. Li, J. Zhao, L. Zhang, M. Hu, L. Wang, J. Hu, Org. Lett. 2015, 17, 298-301.
- [8] H. Kondo, M. Oishi, K. Fujikawa, H. Amii, Adv. Synth. Catal. 2011, 353, 1247-1252.
- [9] H. Serizawa, K. Aikawa, K. Mikami, *Chem.-Eur. J.* **2013**, *19*, 17692-17697.
- [10] K. Aikawa, Y. Nakamura, Y. Yokota, W. Toya, K. Mikami, *Chem.-Eur. J.* 2015, 21, 96-100.
- [11] G. Bernasconi, S. M. Bromidge, A. J. Carpenter, L. D'Adamo, R. Di Fabio, S. Guery, F. Pavone, A. Pozzan, M. Rinaldi, F. M. Sabbatini, Y. St-Denis, Glaxo Group Limited, UK . WO2008148853A1, 2008, p. 230pp.
- [12] M. G. Mormino, P. S. Fier, J. F. Hartwig, Org. Lett. 2014, 16, 1744-1747.
- [13] Z.-L. Wei, J. Kincaid, M. G. Kelly, D. O'Mahony, C. Kaub, Renovis, Inc., USA. WO2008123963A1, 2008, p. 109pp.
- [14] F. Cottet, M. Marull, F. Mongin, D. Espinosa, M. Schlosser, Synthesis 2004, 1619-1624.
- [15] F. Cottet, M. Schlosser, Eur. J. Org. Chem. 2002, 2002, 327-330.
- [16] M. M. Kremlev, A. I. Mushta, W. Tyrra, Y. L. Yagupolskii, D. Naumann, A. Möller, J. Fluorine Chem. 2012, 133, 67-71.
- [17] T. Knauber, F. Arikan, G.-V. Roeschenthaler, L. J. Goossen, *Chem.-Eur. J.* 2011, 17, 2689-2697.
- [18] T. Kawasaki-Takasuka, T. Yamazaki, *Tetrahedron* **2015**, *71*, 6824-6831.

Generation of L_nCuCF_3 species from reaction of 1a with CsF in the presence of NaOH in DMF at 75 °C.

1a (0.083 mmol) + NaOH (0.1 mmol) + CsF (0.1 mmol) in DMF, 75 °C, 0 min

¹H NMR spectrum of **3a** in CDCl₃

¹⁹F NMR spectrum of **3a** (unlocked)

¹⁹F NMR spectrum of **3a** in CDCl₃

¹³C NMR spectrum of **3a** in CDCl₃

¹H NMR spectrum of **3b** in CDCl₃

¹⁹F NMR spectrum of **3b** in CDCl₃

¹³C NMR spectrum of **3b** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹⁹F NMR spectrum of **3b** (unlocked)

¹H NMR spectrum of 3c in CDCl₃

¹⁹F NMR spectrum of **3c** in CDCl₃

¹³C NMR spectrum of 3c in CDCl₃

¹⁹F NMR spectrum of **3c** (unlocked)

¹H NMR spectrum of 3d in CDCl₃

^{13}C NMR spectrum of 3d in CDCl_3

¹⁹F NMR spectrum of **3d** (unlocked)

¹⁹F NMR spectrum of **3e** in CDCl₃

¹³C NMR spectrum of **3e** in CDCl₃

¹⁹F NMR spectrum of **3e** (unlocked)

^{13}C NMR spectrum of 3f

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of **3f** (unlocked)

¹H NMR spectrum of **3g** in CDCl₃

 19 F NMR spectrum of **3g** in CDCl₃

13 C NMR spectrum of **3g** in CDCl₃

¹H NMR spectrum of **3h** in CDCl₃

¹⁹F NMR spectrum of **3h** in CDCl₃

¹³C NMR spectrum of **3h** in CDCl₃

¹⁹F NMR spectrum of **3h** (unlocked)

¹H NMR spectrum of **3i** in CDCl₃

¹⁹F NMR spectrum of **3i** in CDCl₃

^{13}C NMR spectrum of **3i** in CDCl₃

¹⁹F NMR spectrum of **3i** (unlocked)

¹H NMR spectrum of **3j** in CDCl₃

 19 F NMR spectrum of **3j** in CDCl₃

¹³C NMR spectrum of **3j** in CDCl₃

 ^{19}F NMR spectrum of **3k** in CDCl₃

¹³C NMR spectrum of **3k** in CDCl₃

¹H NMR spectrum of **3l** in CDCl₃

¹⁹F NMR spectrum of **3l** in CDCl₃

13 C NMR spectrum of **3l** in CDCl₃

¹⁹F NMR spectrum of **3l** (unlocked)

¹H NMR spectrum of 3m in CDCl₃

^{13}C NMR spectrum of 3m in CDCl_3

¹⁹F NMR spectrum of **3m** (unlocked)

¹H NMR spectrum of 3n in CDCl₃

^{13}C NMR spectrum of **3n** in CDCl₃

¹H NMR spectrum of **30** in CDCl₃

¹³C NMR spectrum of **30** in CDCl₃

¹H NMR spectrum of **3p** in CDCl₃

¹⁹F NMR spectrum of **3p** in CDCl₃

¹³C NMR spectrum of **3p** in CDCl₃

¹H NMR spectrum of 3q in CDCl₃

13 C NMR spectrum of **3q** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹⁹F NMR spectrum of **3q** (unlocked)

¹H NMR spectrum of 3r in CDCl₃

13 C NMR spectrum of **3r** in CDCl₃

¹⁹F NMR spectrum of **3r** (unlocked)

^1H NMR spectrum of 5a in CDCl_3

 ^{19}F NMR spectrum of 5a in CDCl_3

^{13}C NMR spectrum of 5a in CDCl_3

¹H NMR spectrum of **5b** in CDCl₃

¹³C NMR spectrum of **5b** in CDCl₃

¹⁹F NMR spectrum of **5b** (unlocked)

¹H NMR spectrum of **5c** in CDCl₃

 ^{19}F NMR spectrum of 5c in CDCl_3

¹³C NMR spectrum of **5c** in CDCl₃

¹⁹F NMR spectrum of **5c** (unlocked)

 ^{19}F NMR spectrum of 5d in CDCl_3

¹³C NMR spectrum of **5d** in CDCl₃

¹⁹F NMR spectrum of **5e** in CDCl₃

¹³C NMR spectrum of **5e** in CDCl₃

¹H NMR spectrum of **5f** in CDCl₃

¹³C NMR spectrum of **5f** in CDCl₃

66

¹H NMR spectrum of **5g** in CDCl₃

¹³C NMR spectrum of **5g** in CDCl₃

^1H NMR spectrum of 5h in CDCl_3

¹H NMR spectrum of **5i** in CDCl₃

¹H NMR spectrum of **5j** in CDCl₃

13 C NMR spectrum of **5j** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR spectrum of **5j** (unlocked)

¹H NMR spectrum of **5k** in CDCl₃

¹H NMR spectrum of **5l** in CDCl₃

¹³C NMR spectrum of **5l** in CDCl₃

 ^{19}F NMR spectrum of 5m in CDCl_3

^{13}C NMR spectrum of 5m in CDCl_3

¹H NMR spectrum of 5n in CDCl₃

¹³C NMR spectrum of **5n** in CDCl₃

¹H NMR spectrum of **50** in CDCl₃

¹³C NMR spectrum of **50** in CDCl₃

¹H NMR spectrum of **7** in CDCl₃

¹³C NMR spectrum of **7** in CDCl₃

86