Supporting information for

# Mineralization of Perfluorooctanesulfonate (PFOS) and Perfluorodecanoate (PFDA) from Aqueous Solution by Porous Hexagonal Boron Nitride: Adsorption Followed by Simultaneous Thermal Decomposition and Regeneration

Yong Feng<sup>a</sup>, Ying Zhou<sup>a</sup>, Po-Heng Lee<sup>b</sup>, Kaimin Shih<sup>a\*</sup>

<sup>a</sup> Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong. E-mail: kshih@hku.hk; Fax: +852 2559-5337; Tel: 852-2859-1973

<sup>b</sup> Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.

**RSC** Advances

Revised

October, 2016

\* To whom correspondence should be addressed:

Dr. Kaimin Shih Phone: +852-2859-1973

Fax: +852-2559-5337

E-mail: kshih@hku.hk

Totally six pages including one table and four figures

### List of supporting information

Table S1. Physico-chemical properties of PFOS and PFDA.

Figure S1. X-ray diffraction pattern of ch-BNs; standard hexagonal boron nitride (ICDD PDF #34-0421).

Figure S2. Scanning electron microscopy image of ch-BNs.

Figure S3. UPLC-MS/MS total ion current chromatogram of standard PFASs (top, each with a concentration of 10  $\mu$ g L<sup>-1</sup>); multiple-reaction monitoring chromatogram of PFHxS, PFBuS, PFNA, PFOA, and PFHpA.

Figure S4. Quantification results of the mixture after calcination at 600 °C for 20 min. Alumina powders were added to the resulting product as an internal standard (wt. 20%).

#### **Chemical properties**

| Compound | Formula            | Weight | Solubility    | pK <sup>1</sup> | Vapor pressure        | CMC <sup>a</sup>  | $K_{aw}{}^{b}$       |
|----------|--------------------|--------|---------------|-----------------|-----------------------|-------------------|----------------------|
|          |                    |        | $(mg L^{-1})$ |                 | (Pa at 20 °C)         | $(mg L^{-1})^{1}$ |                      |
| PFOS     | $C_8F_{17}SO_3^-$  | 499    | 570           | -3.27           | $3.31 \times 10^{-4}$ | 3992.0            | $< 2 \times 10^{-6}$ |
| PFDA     | $C_{10}HF_{19}O_2$ | 514    | 9, 500 °      | 1.05            | ~                     | 462.6             | ~                    |

Table S1 Physico-chemical properties of PFOS and PFDA

<sup>a</sup> Critical micelle concentration with potassium ions as the dominant counterions.

<sup>b</sup>  $K_{aw} = C_a/C_w$  ( $C_a$  and  $C_w$  represent air concentration and water concentration, respectively).

<sup>c</sup> Source: ALS Environmental (Houston, TX, USA).

#### **Characterization of ch-BNs**



Figure S1. X-ray diffraction pattern of ch-BNs; standard hexagonal boron nitride (ICDD PDF #34-0421).



Figure S2. Scanning electron microscopy image of ch-BNs.



Chromatograms of standard short-chain PFSAs and PFCAs

Figure S3. UPLC-MS/MS total ion current chromatogram of standard PFASs (top, each with a concentration of 10  $\mu$ g L<sup>-1</sup>); detailed conditions can be found in our previous publication.<sup>2</sup> Multiple-reaction monitoring chromatogram of PFHxS, PFBuS, PFNA, PFOA, and PFHpA.



Figure S4. Quantification results of the mixture after calcination at 600 °C for 20 min. Alumina powders were added to the resulting product as an internal standard (wt. 20%).

## References

- 1 E. Kissa, Fluorinated surfactants and repellents, CRC Press, 2001.
- 2 R. Ma and K. Shih, *Environ. Pollut.*, 2010, **158**, 1354-1362.