Electronic Supplementary Information

Solar and visible light photocatalytic enhancement of halloysite nanotubes / $g-C_3N_4$ heteroarchitectures

K. C. Christoforidis,^{*a*,*} M. Melchionna,^{*a*} T. Montini,^{*a*} D. Papoulis,^{*b*} E. Stathatos,^{*c*} S. Zafeiratos,^{*d*} E. Kordouli^{*e*} and P. Fornasiero^{*a*,*}

^a Department of Chemical and Pharmaceutical Sciences, ICCOM-CNR Trieste
ResearchUnit – INSTM Research Unit, University of Trieste, via L. Giorgieri 1,
34127 Trieste, Italy.

^b Department of Geology, University of Patras, 26504 Patras, Greece.

^{*c*} Department of Electrical Engineering, Technological Educational Institute (TEI) of Western Greece, 26334 Patras, Greece.

^d Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé,
(ICPEES) ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, 67087
Strasbourg, France.

^e Department of Chemistry, University of Patras, 26504 Patras, Greece.

Figure S1. Survey spectra of the HNTs, CN and CNH-2 samples.

Figure S2. High resolution XPS spectra of the pure HNTs and CN and the CNH-*x* nanocomposites in (A) the C 1s, (B) N 1s, (C) O 1s (symbols, subtracted spectrum, CNH-2 – HNTs) and (D) Al 2p.

Figure S3. Nitrogen adsorption-desorption isotherms of $g-C_3N_4$ (a), HNTs (f) and the HNTs/g-C₃N₄ ((b)-(e)) nanocomposites.

4

Figure S4. Pore size distribution of the samples calculated from the desorption branch of the N_2 isotherm using the BJH method.

Fig. S5. TGA profiles of the g-C3N4, HNTs and of the as-prepared HNTs/g-C3N4 nanocomposites.

Figure S6. UV-Vis absorption spectra of the pure $g-C_3N_4$ and HNTs and the CNH-*x* nanocomposite (A) and the corresponding plots used to estimate band gap energies (B) considering the materials indirect semiconductors.

Figure S7. Zeta potentials of the CN, CNH-2 and HNTs as a function of pH.

Figure S8. MB adsorption on the pure $g-C_3N_4$, HNTs and CNH-*x* photocatalysts in the dark. For the $g-C_3N_4$ and CNH-*x* nanocomposites, 1.25 g L⁻¹ of the material was used. For the HNTs, 0.125 g L⁻¹ were used, e.g. equal amount of HNTs in the CNH-4 sample.

Figure S9. First-order-kinetic plots for the catalytic data under simulated solar light irradiation.

Figure S10. Photocatalytic degradation of phenol (A) and MO (B) over the pure g- C_3N_4 (black), HNTs (purple) and CNH-2 (red) photocatalysts under simulated solar light irradiation.