Structural and optical properties of sol-gel derived Cr-doped ZnO diluted magnetic semiconductor nanocrystals: an EXAFS study to relate the local structure

Shiv Kumar¹, N. Tiwari², S. N. Jha², S. Chatterjee³, D. Bhattacharyya², and Anup K. Ghosh^{1,*}

¹Materials Research Laboratory, Department of Physics, Banaras Hindu University, Varanasi-21 005, India; ²Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai–400 085; ³Department of Applied Physics, Indian Institute of Technology, Banaras Hindu University, Varanasi-221 005, India

Supplementary Document

		Cr 0	Cr 0.5	Cr 1	Cr 1.5	Cr 2	Cr 4	Cr 6
Zn-O	CN(4)	4.16	2.8	2.76	2.84	2.56	2.6	2.48
	R(1.97Å)	1.93	1.95	1.95	1.95	1.95	1.98	1.95
	$\sigma^2 \left(\mathring{A}^2 \right)$	0.008	0.004	0.001	0.002	0.002	0.002	0.002
Zn-Zn	CN(12)	11.8	11.04	10.86	11.52	11.76	11.05	10.82
	R(3.20Å)	3.22	3.23	3.22	3.23	3.22	3.21	3.23
	$\sigma^2 \left(\mathring{A}^2 \right)$	0.008	0.008	0.009	0.008	0.009	0.009	0.009
R-		0.002	0.001	0.002	0.002	0.002	0.004	0.001
factor								

Table-S1: Best fit results of the EXAFS measurements on Cr doped ZnO samples at Zn K edge: (Typical uncertainity for CN ~ $\pm 10\%$; R ~ ± 0.02 Å; $\sigma^2 \sim \pm 0.001$ Å²).

		Cr 1	Cr 2	Cr 4	Cr 6
Cr-O	CN(4)	2.96	5.2	3.24	3.69
	R(1.97Å)	1.96	1.96	1.96	1.96
	σ^2 (Å ²)	0.005	0.003	0.001	0.002
Cr-Zn	CN(12)	1.54	8.1	6.7	5.04
	R(3.20Å)(3.25Å)	2.94	2.96	2.9	2.95
	σ^2 (Å ²)	0.001	0.005	0.005	0.005
R-factor		0.003	0.002	0.003	0.003

Table S2: Fit parameters by assuming wurtzite ZnO structure with Cr at Zn sites. (Typical uncertainity for CN ~ $\pm 10\%$; R ~ ± 0.02 Å; $\sigma^2 \sim \pm 0.001$ Å²).

Table-S3: Fit parameters by assuming Cr_2O_3 structure. (Typical uncertainity for CN ~±10%; R ~±0.02Å; σ^2 ~±0.001Å²).

		Cr 1	Cr 2	Cr 4	Cr 6
Cr-O	CN(6)	5.64	6.48	6.48	6.06
	R(1.97Å)	2.01	2.00	2.03	2.02
	$\sigma^2(\text{\AA}^2)$	0.018	0.005	0.017	0.014
Cr-Cr/Zn	CN(2)	1.81	1.99	1.96	1.90
	R(2.58Å)	2.51	2.46	2.51	2.52
	σ^2 (Å ²)	0.008	0.004	0.001	0.005
Cr-Cr/Zn	CN(2)	4.16	4.12	4.06	4.0
	R(2.88Å)	2.94	3.01	3.01	3.00
	σ^2 (Å ²)	0.02	0.001	0.007	0.009
R-factor		0.006	0.002	0.002	0.008

		Vibratio	Assignments	Process				
Cr0	Cr0.5	Cr1	Cr1.5	Cr2	Cr4	Cr6		
329	328.71	327.58	328.71	329.84	328.71	329.56	E _{2H} -E _{2L}	Second order
378	377.32	379.21	377.44	377.37	380.12	384.30	A ₁ (TO)	First order
408	409.58	411.86	413.18	414.31	413.20	418.28	E ₁ (TO)	First order
434	434.59	433.46	434.59	434.59	433.46	434.68	E _{2H}	First order
	480.78	477.34	476.43	477.44	470.94	472.96		NM1
	523.38	529.01	530.18	529.39	530.37	536.60		NM2
575	578.76	575.38	576.51	577.63	575.38	578.29	A ₁ (LO)	First order
585							E ₁ (LO)	First order
658	655.73	660.01	668.52	672.11	686.89	684.36		Second order
	852.46	856.93	853.56	852.26	851.59	850.80		
1142	1149.8	1144.1	1147.5	1143	1144.1	1147.5		Second order

Table-S4: Observed Raman peaks of $Zn_{1-x}Cr_xO$ ($0 \le x \le 0.06$) nanoparticles and their symmetry assignments.

Sample	Zn-O bond (cm ⁻¹)	New band	Citrate Precurs or (cm ⁻¹)	Asymm etric C=O stretchi ng	Symmet ric stretchi ng of C=O in	CO ₂ molecul es in Air (cm ⁻¹)	C-H bond (cm ⁻¹)	O-H bond (cm ⁻¹)
				mode of Zinc citrate (cm ⁻¹)	Zinc citrate (cm ⁻¹)			
ZnO	437	649	874	1385	1620	2345	2927	3468
Zn _{0.995} Cr _{0.005} O	427	645	889	1384	1604	2343	2923	3456
Zn _{0.99} Cr _{0.01} O	431	640.	898	1384	1602	2347	2923	3447
Zn _{0.985} Cr _{0.015} O	438	635	895	1384	1602	2347	2926	3439
Zn _{0.98} Cr _{0.02} O	444	638	902	1384	1615	2341	2931	3447
Zn _{0.96} Cr _{0.04} O	455	641	904	1384	1612	2347	2931	3442
Zn _{0.94} Cr _{0.06} O	438	644	920	1384	1612	2347	2924	3440

Table-S5: Different vibrational modes obtained from FTIR study of $Zn_{1-x}Cr_xO$ nanocrystals.

Figure S1: Normalized experimental Zn K-edge EXAFS ($\mu(E)$ versus *E*) spectra of undoped and Cr doped ZnO nanocrystals.

Figure S2: Normalized experimental Cr K-edge EXAFS ($\mu(E)$ vs E) spectra of Cr doped ZnO nanocrystals.