Supplementary Data

Potential Panorama of Carbon dots as Fluorescence Sensing Probe for metal ions

Savita Chaudhary^{*}, Sandeep Kumar, Bhawandeep, S.K. Mehta

Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India

*Corresponding author E-mail address: schaudhary@pu.ac.in Tel: +91 9417250377; Fax: +91 172 2545074

Fig. S1. The corresponding antifungal activity of (a) CQD_1 , (b) CQD_2 , (c) CQD_3 and (d) CQD_4

Table S1. The corresponding Elemental analysis results for four different kinds of CQDs.

Samples	С%	Н%	N%	0%
CQD ₁	60.4	4.21	0.5	34.99
CQD ₂	61.3	3.8	0.42	34.48
CQD ₃	59.7	4.1	0.4	35.8
CQD ₄	61.07	3.78	0.48	34.67

Fig. S2. High resolution deconvoluted peaks of C1s and O1S for (a, a1) CQD₁, (b, b1) CQD₂, (c, C1) CQD₃ and (d, d1) CQD₄ respectively.

Fig. S3. (a) Tauc plots and (b) corresponding band gap values of four different kind of CQDs.

Sample	Peak one			Peak 2			Peak 3		
	Peak position (nm)	Area	FWHM	Peak position (nm)	Area	FWHM	Peak position (nm)	Area	FWHM
CQD ₁	341.8	9.3 x 10 ⁴	45.4	421.2	1.57 x 10 ⁵	80.9	515	9.8 x 10 ³	65.6
CQD ₂	356.4	1.0 x 10 ⁴	42.8	426.9	1.06 x 10 ⁵	56.6	456.64	7.7 x 10 ⁴	95.2
CQD ₃	343	9.7 x 10 ³	30.7	356.8	9.9 x 10 ³	53.9	394.2	1.6 x 10 ⁴	126.7
CQD ₄	350	3.4 x 10 ⁴	27.9	421.4	1.4 x 10 ⁴	84.9	497.4	3.2 x 10 ³	166.1

Table S2. The corresponding positioning, area under the curve and the FWHM for four different kinds of CQDs.

Fig. S4. Effect of different pH values on the emission spectra of (a) CQD_1 , (b) CQD_2 , (c) CQD_3 and (d) CQD_4 .

Fig. S5. Excitation dependent fluorescence spectra of (a) CQD_1 , (b) CQD_2 , (c) CQD_3 and (d) CQD_4 .

Fig. S6. Varaiton of (a) area under the curve and (b) full width at half maximum (fwhm) as function of λ_{ex} for different kind of CQDs.

Fig. S7. Effect of different applied votage on the emission spectra of (a) CQD_1 , (b) CQD_2 , (c) CQD_3 and (d) CQD_4 .

Fig. S8. Fluorescence emission spectra of (a) CQD_1 (b) CQD_3 and (c) CQD_4 in the presence of various concentrations of Cr^{3+} ion.

Fig. S9. The percentage recovery of Cr^{3+} ions from distilled water, buffer solution and tap water by using (a) CQD₁, (b) CQD₂, (c) CQD₃ and (d) CQD₄.