Catalytic performance of supported g-C₃N₄ on MCM-41 in organic dyes degradation with peroxymonosulfate

Huijie Dong,^a Mingyu Wei,^b Jun Li,^b Jia Fang,^a Long Gao,^b Xiaoxia Li,^{a*} Aihua Xu^{b,c}

^aSchool of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, PR China.

^bSchool of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China.

^c Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, PR China.

*Corresponding author:

E-mail: lixxwh@163.com

Tel: (+86) 27-59367334, Fax: (+86) 27-59367334

Fig.S1 Arrhenius plot of log k_{obs} for AO7 decolorization with the g-C₃N₄/MCM-41+PMS system. (Conditions: g-C₃N₄/MCM-41 1.0 g/L, PMS 0.188 g/L, AO7 50 mg/L.)

Table S1

Sample	$g-C_3N_4$	BET area	Total pore	Average pore
	content	(m^{2}/g)	Volume (cm ³ /g)	diameter (nm)
MCM-41	0	1077	1.08	2.81
$g-C_3N_4/MCM-41$	35.3 %	324	0.367	2.18
g-C ₃ N ₄ /MCM-41	43.4 %	298	0.329	2.09
g-C ₃ N ₄ /MCM-41	60.2 %	56	0.128	2.08
$g-C_3N_4$	100%	14	0.106	33.5

Fig.S2 O1s XPS peaks of $g-C_3N_4/MCM-41$ with different $g-C_3N_4$ loadings: (1) MCM-41, (2) $g-C_3N_4/MCM-41(35.3\%)$, (3) $g-C_3N_4/MCM-41(43.4\%)$, (4) $g-C_3N_4/MCM-41$ (60.2%) and (5) $g-C_3N_4$.

Fig.S3 N1s XPS peaks of $g-C_3N_4/MCM-41$ with different $g-C_3N_4$ loadings: (1) MCM-41, (2) $g-C_3N_4/MCM-41(35.3\%)$, (3) $g-C_3N_4/MCM-41(43.4\%)$, (4) $g-C_3N_4/MCM-41$ (60.2%) and (5) $g-C_3N_4$.

Fig.S4 XRD patterns of $g-C_3N_4/MCM-41$ catalysts with different loadings

Fig.S5 FT-IR spectra of $g-C_3N_4/MCM-41$ catalysts with different loadings

Fig.S6 HRTEM images of (1) MCM-41, (2) $g-C_3N_4/MCM-41(35.3\%)$, (3) $g-C_3N_4/MCM-41$ (43.4%), (4) $g-C_3N_4/MCM-41$ (60.2%) and (5) $g-C_3N_4$.

Fig.S7 XRD (A) and FT-IR (B) spectra of fresh and used $g-C_3N_4/MCM-41$ catalyst