Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

Figure S1. Wetting angles of four carbon samples, (a) PCN, (b) PCN/G, (c) NPCN, (d) NPCN/G.

Figure S2. N2 adsorption-desorption isotherms and pore size distribution of three samples (PCN, PCN/G and NPCN).

	Electrolyte	Current	Scan rate (mV s ⁻¹)	Specific	
Sample		density		capacitance	Reference
		(A g ⁻¹)		(F g ⁻¹)	
MOF-derived porous carbon					
NPCN/G	6 М КОН	0.5	_	270	
		_	10	307	Present work
NPCN	6 М КОН	0.5	_	193.5	Present work
C-S700		_	2	182	
	6 M KOH		20	163	1
MC-AI	6 М КОН	0.5	_	182	2
Carbon-700	6 М КОН	_	10	218	3
Carbon-ZS	6 М КОН	0.5	_	216.8	4
N-doped carbon materials					
CTNC	6 М КОН	0.5	_	125	5
Carbon nanotube	6 М КОН	0.5	_	140	6
Porous carbon	6 М КОН	0.5	_	160	7
Nitrogen-rich I	nollow		_		
carbon nanofibers	6 M KOH	0.2		293	8

Table S1. Specific capacitance of various MOF-derived carbons.

Supplementary References

- 1. P. Su, L. Jiang, J. Zhao, J. Yan, C. Li and Q. Yang, *Chemical Communications*, 2012, **48**, 8769-8771.
- 2. X. Yan, X. Li, Z. Yan and S. Komarneni, *Applied Surface Science*, 2014, **308**, 306-310.
- 3. Z. J. Zhang, P. Cui, C. Chen, X. Y. Chen and J. W. Liu, J. Solid State Electrochem. , 2013, 18, 59-67.
- 4. S. Zhong, C. Zhan and D. Cao, *Carbon*, 2015, **85**, 51-59.
- 5. M. Zhong, E. K. Kim, J. P. Mcgann, S. E. Chun, J. F. Whitacre, M. Jaroniec, K. Matyjaszewski and T. Kowalewski, *Journal of the American Chemical Society*, 2012, **134**, 14846-14857.
- 6. M. Yang, B. Cheng, H. Song and X. Chen, *Electrochim. Acta* 2010, **55**, 7021-7027.
- X. Y. Chen, C. Chen, Z. J. Zhang, D. H. Xie, X. Deng and J. W. Liu, *Journal of Power Sources*, 2013, 230, 50-58.
- 8. C. Zhan, Q. Xu, X. Yu, Q. Liang, Y. Bai, Z.-H. Huang and F. Kang, *RSC Adv.*, 2016, **6**, 41473-41476.