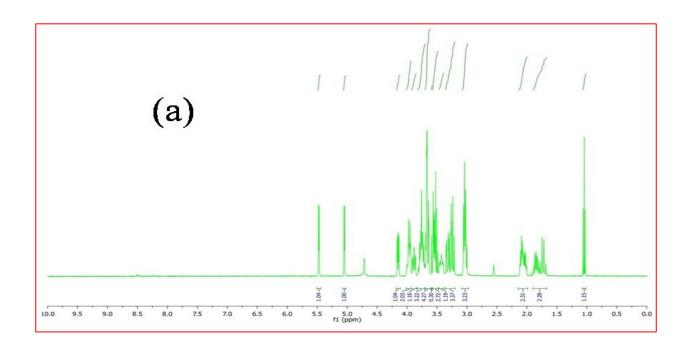
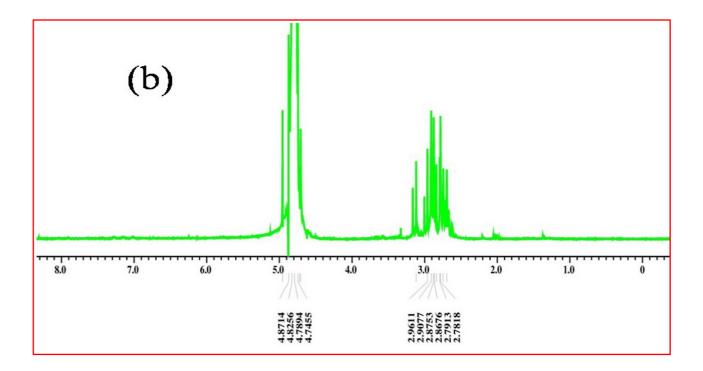
Supporting information


One-step synthesis of amikacin modified fluorescent carbon dots for the detection of Gram-negative bacteria like *Escherichia coli*.


Soumen Chandra, Angshuman Ray Chowdhuri, Triveni Kumar Mahto, Arpita Samui, Sumanta kumar Sahu^{*}

Department of Applied Chemistry, Indian School of Mines, Dhanbad 826004, Jharkhand, India

* Corresponding author. E-mail: sahu.s.ac@ismdhanbad.ac.in, sumantchem@gmail.com; Fax: +91 326-2307772; Tel: +91 3262235936

Note added after first publication: This Supplementary Information file was updated on 13 February 2018, replacing that originally published on 25 July 2016, in which an incorrect image was included in Fig. S7 (b).

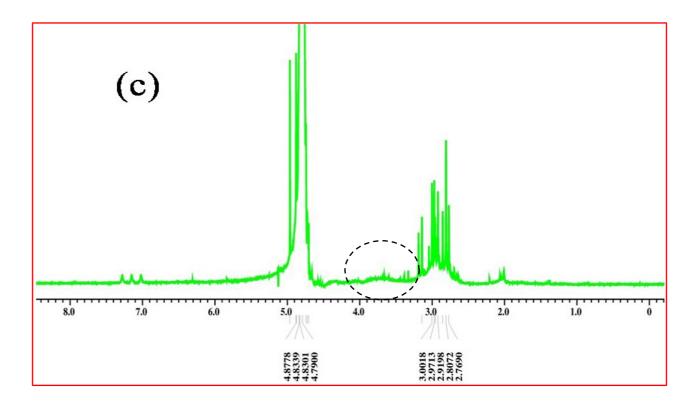
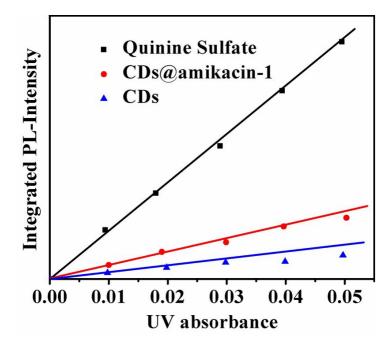
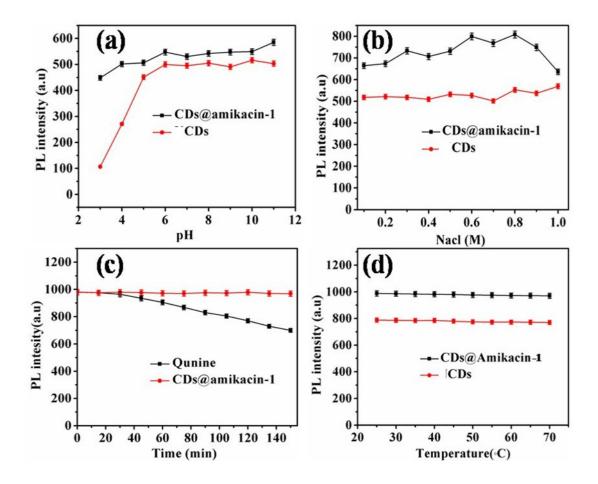




Fig.S1: ¹HNMR of amikacin (a); CDs (b) and CDs@amikacin-1(c).

Fig.S2: Integrated fluorescence intensity versus UV-absorbance plot of the CDs@amikacin-1, CDs and Quinine Sulfate.

Fig.S3:(a) Effect of pH on the fluorescence intensity of CDs@amikacin-1 and CDs;(b) Effect of ionic strengths on the fluorescence intensity of CDs@amikacin-1 and CDs (ionic strengths were controlled by various concentrations of NaCl); (c) Change in fluorescence intensity of the CDs@amikacin-1 and commercial dye quinine with respect to time of irradiation of UV light radiation; (d) Change in fluorescence intensity of the CDs@amikacin-1 and CDs with increasing temperature.

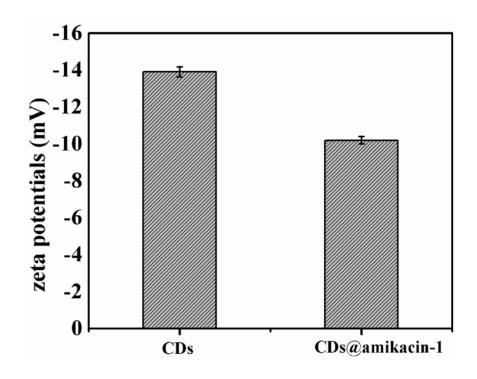
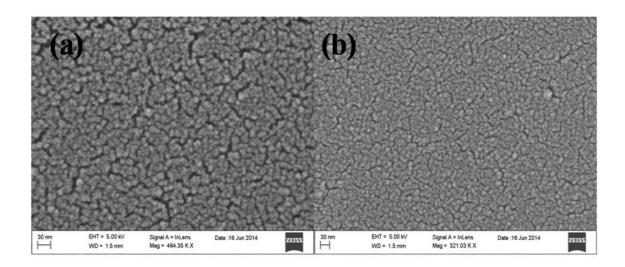



Fig. S4: Zeta potential of CDs@amikacin-1 and CDs at pH7.

Fig.S5: FESEM image of the CDs@amikacin-1 (a) and CDs(b).

Element	Weight%	Atomic%
СK	49.24	54.60
NK	26.47	25.17
ОК	24.29	20.23
Totals	100.00	
4 6 s Cursor: 0.000	8 10 12	14 16
	8 10 12	14 16
s Cursor: 0.000	1	1
s Cursor: 0.000 Element	Weight%	Atomic%
s Cursor: 0.000	1	1
Element C K	Weight% 46.84	Atomic%

Fig. S6: EDX spectra and elemental composition of the as synthesised (a) CDs and (b)

CDs@amikacin-1.

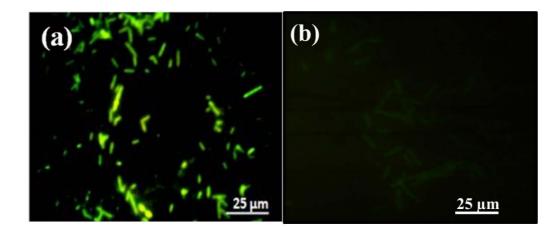


Fig.S7: Fluorescent image of *E. coli.* labeled with (a) CDs@amikacin-1 and (b) CDs@amikacin-2.

To examine the CDs attachment on the bacterial cells, CDs@amikacin-1 and CDs@amikacin-2 was incubated with *E. coli*. The *E. coli* concentration was adjusted to 10^6 cfu/mL. Each culture was incubated in a shaking incubator at 37 °C for overnight. The *E. coli* were washed twice with phosphate buffered saline to remove any unutilized CDs. The fluorescence intensity of CDs@amikacin-1 and CDs@amikacin-2 was analyzed under fluorescent microscope for detection of fluorescence intensity in bacterial cells. The fluorescent images revels that *E. coli*. labeled with, CDs@amikacin-1 has higher fluorescence intensity in compared to *E. coli*. labeled with, CDs@amikacin-2, as shown in the Fig.S7.

Table 1: Comparative study for LOD values and linear ranges with our work and other previously reported work for *E. Coli* detection.

References	LOD(cfu/mL)	Linear range(cfu/mL)	
[1]	3.5x10 ²	$3.5 \times 10^2 - 2.9 \times 10^3$	
[2]	9.5x10 ⁴	10 ⁵ -10 ⁸	
[3]	4.5x10 ²	10^{3} - 10^{8}	
Our work	5.52x10 ²	7.625x10 ² -3.904x10 ⁵	

References:

M. L. Bhaisare, G. Gedda, M. S. Khan and H-F. Wu, *Analytica Chimica Acta*, 2016,920, 63-71.

 N. Wang, Y.Wang, T. Guo, T.Yang, M.Chen and J.Wang, *Biosensors and Bioelectronics*, 2016, 85, 68–75.

3. C-I. Weng, H-T. Chang, C-H. Lin, Y-W. Shen, B. Unnikrishnan, Y-J. Li, C-C. Huang, *Biosensors and Bioelectronics*, 2015, **68**, 1–6.