Supplemental Information

"Rigid versus flexible anilines or anilides confirm the bicyclic ring as the hydrophobic portion for optimal $\sigma_{\mathbf{2}}$ receptor binding and provide novel tools for the development of future $\sigma_{\mathbf{2}}$ receptor PET radiotracer"

Authors: Niso Mauro ${ }^{\ddagger}$, Maria Laura Pati ${ }^{\ddagger}$, Francesco Berardi ${ }^{\ddagger}$, Carmen Abate ${ }^{*}$.

\ddagger Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy

Table of contents

Synthesis of intermediate compounds 3a-c, 9a-c; table of elemental analyses, table of physical properties of novel compounds.

General procedure for the synthesis of 3-Chloro- N-Phenylpropanamides (3a-c).

One of the appropriate anilines (2.5 mmol) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and after cooling at $0{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{mmol}, 0.13 \mathrm{~mL})$ was added under a stream of N_{2}. 3-Chloropropionyl chloride was then added to the solution in a dropwise manner, and the resulting mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. The solution was then quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The collected organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to afford a crude solid, which was used for the next step without purification (75% yield).

3-Chloro- N-phenylpropanamides (3a): GC-MS $m / z 185\left(\mathrm{M}^{+}+2,10\right), 183\left(\mathrm{M}^{+}, 30\right), 93(100)$.
3-Chloro-N-3-methoxyphenylpropanamides (3b): GC-MS $m / z 215\left(\mathrm{M}^{+}+2,10\right), 213\left(\mathrm{M}^{+}, 35\right)$, 123 (100). IR cm ${ }^{-1}: 3300,3090,1664,1610$.

3-Chloro-N-4-fluorophenylpropanamides (3c): GC-MS m/z $203\left(\mathrm{M}^{+}+2,10\right), 201\left(\mathrm{M}^{+}, 30\right), 111$ (100).

General procedures for the synthesis of alkyl chloride derivatives (9a-c)

To a suspension of $\mathrm{NaH}(0.16 \mathrm{~g}, 6.80 \mathrm{mmol})$ in dry DMF $(15 \mathrm{~mL})$, a solution in DMF $(5 \mathrm{~mL})$ of the appropriate 3,4-dihydroquinolin-2(1H)-one (8a-c) (2.7 mmol), was added in a dropwise manner, at $0{ }^{\circ} \mathrm{C}$ under a stream of N_{2}. After $30 \mathrm{~min}, 1$-bromo-3-chloropropane ($3 \mathrm{mmol}, 0.29 \mathrm{~mL}$) was added in a dropwise manner and the mixture was allowed to warm to room temperature and was stirred for 4 h . After cooling to $0{ }^{\circ} \mathrm{C} \mathrm{H}_{2} \mathrm{O}$ was added and the solvent was removed under reduced pressure. The residue was taken up with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic layers were collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to afford a crude residue as a brown solid.

1-(3-Chloropropyl)-3,4-dihydroquinolin-2(1H)-one (9a) was purified by column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt}(8: 2)$ as eluent to provide a yellow oil ($0.33 \mathrm{~g}, 55 \%$); GC-MS $m / z 225\left(\mathrm{M}^{+}+2\right.$, 15), $223\left(\mathrm{M}^{+}, 45\right), 188(55), 132(100)$.

1-(3-Chloropropyl)-5-methoxy-3,4-dihydroquinolin-2(1H)-one (9b) the crude residue was used for the next step with no purification ($0.39 \mathrm{~g}, 58 \%$); GC-MS $m / z 255\left(\mathrm{M}^{+}+2,25\right), 253\left(\mathrm{M}^{+}, 75\right)$, 218 (85), 162 (100).

1-(3-Chloropropyl)-6-fluoro-3,4-dihydroquinolin-2(1H)-one (9c) was purified by column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt}(9: 1)$ as eluent to provide a colorless oil ($0.42 \mathrm{~g}, 65 \%$); GCMS m/z $243\left(\mathrm{M}^{+}+2,15\right), 243\left(\mathrm{M}^{+}, 45\right), 206(60), 150(100)$.

Table of Elemental Analyses

	Calculated			Found		
Compound	\mathbf{C}	\mathbf{H}	\mathbf{N}	\mathbf{C}	\mathbf{H}	\mathbf{N}
$\mathbf{4 a}$	63.74	6.69	7.43	63.56	6.70	7.34
$\mathbf{4 b}$	61.99	6.69	6.88	62.10	6.73	7.00
$\mathbf{4 c}$	60.83	6.13	7.09	61.10	6.30	7.12
$\mathbf{5 a}$	70.15	7.07	7.01	70.30	7.20	7.11
$\mathbf{5 b}$	58.13	7.09	6.46	58.02	6.98	6.46
$\mathbf{5 c}$	56.94	6.57	6.64	57.08	6.51	6.91
$\mathbf{6 a}$	61.82	7.43	6.55	61.25	7.06	6.73
$\mathbf{6 b}$	59.81	6.73	5.58	59.81	6.43	5.66
$\mathbf{6 c}$	62.48	6.67	6.62	62.30	6.56	6.70
$\mathbf{7 a}$	61.82	7.55	6.55	62.03	7.43	6.60
$\mathbf{7 b}$	60.39	7.49	6.12	60.56	7.40	6.21
$\mathbf{7 c}$	59.33	7.02	6.29	59.24	7.13	6.40
$\mathbf{1 0 a}$	66.26	7.01	6.72	66.06	6.97	6.81
$\mathbf{1 0 b}$	60.58	7.25	5.89	60.32	6.97	5.95
$\mathbf{1 0} \mathbf{c}$	61.60	6.63	6.25	61.56	6.44	6.26
$\mathbf{1 1 a}$	62.23	7.38	6.31	62.13	7.29	6.32
$\mathbf{1 1 b}$	60.82	7.34	5.91	60.82	7.33	6.00
$\mathbf{1 1 c}$	59.80	6.87	6.06	59.56	6.85	6.08

Table of Physical Properties of Novel Compounds

Compound	Formula ${ }^{\text {a }}$	mp, ${ }^{\circ} \mathrm{C}$
4 a	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}^{\mathrm{b}}$	232-235
4b	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{HCl} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}^{\mathrm{b}}$	195-197
4 c	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}^{\mathrm{b}}$	244-246
5 a	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{HCl} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}^{\mathrm{b}}$	230-232
5b	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{HCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}^{\mathrm{b}}$	235-237
5c	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F} \cdot 2 \mathrm{HCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}^{\mathrm{b}}$	248-250
6 a	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot 1.25 \mathrm{H}_{2} \mathrm{O}^{\mathrm{b}}$	129-132
6b	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot(\mathrm{COOH})_{2} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}^{\mathrm{b}}$	119-121
6 c	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F} \cdot \mathrm{HCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}^{\text {b }}$	126-129
7 a	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{HCl} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}^{\text {b }}$	187-190
7b	$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{HCl} \cdot 1.25 \mathrm{H}_{2} \mathrm{O}^{\mathrm{b}}$	174-176
7c	$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F} \cdot 2 \mathrm{HCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}^{\mathrm{b}}$	210-213
10a	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}^{\text {b }}$	191-193
10b	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{HCl} \cdot 1.6 \mathrm{H}_{2} \mathrm{O}^{\text {b }}$	188-190
10c	$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F} \cdot \mathrm{HCl} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}^{\text {b }}$	225-227
11a	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{HCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}^{\text {b }}$	211-213
11b	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{HCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}^{\text {b }}$	181-183
11c	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F} \cdot 2 \mathrm{HCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}^{\mathrm{b}}$	230-232

${ }^{\text {a }}$ Elemental analyses for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ were within $\pm 0.4 \%$ of the theoretical values for the formulas given. ${ }^{\mathrm{b}}$ Recrystallized from MeOH.

