Supplemental Information

"Rigid versus flexible anilines or anilides confirm the bicyclic ring as the hydrophobic portion

for optimal σ_2 receptor binding and provide novel tools for the development of future σ_2

receptor PET radiotracer"

Authors: Niso Mauro[‡], Maria Laura Pati[‡], Francesco Berardi[‡], Carmen Abate*[‡]

[‡]Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy

Table of contents

Synthesis of intermediate compounds **3a-c**, **9a-c**; table of elemental analyses, table of physical properties of novel compounds.

General procedure for the synthesis of 3-Chloro-N-Phenylpropanamides (3a-c).

One of the appropriate anilines (2.5 mmol) was dissolved in anhydrous CH_2Cl_2 (10 mL) and after cooling at 0 °C, Et₃N (1 mmol, 0.13 mL) was added under a stream of N₂. 3-Chloropropionyl chloride was then added to the solution in a dropwise manner, and the resulting mixture was stirred for 2 h at 0 °C. The solution was then quenched with H₂O and extracted with CH_2Cl_2 (3 × 10 mL). The collected organic layers were dried (Na₂SO₄) and evaporated under reduced pressure to afford a crude solid, which was used for the next step without purification (75 % yield).

3-Chloro-*N***-phenylpropanamides (3a)**: GC-MS *m*/*z* 185 (M⁺ + 2, 10), 183 (M⁺, 30), 93 (100).

3-Chloro-*N***-3-methoxyphenylpropanamides (3b)**: GC-MS *m*/*z* 215 (M⁺ + 2, 10), 213 (M⁺, 35), 123 (100). IR cm⁻¹: 3300, 3090, 1664, 1610.

3-Chloro-*N***-4-fluorophenylpropanamides (3c)**: GC-MS *m*/*z* 203 (M⁺ + 2, 10), 201 (M⁺, 30), 111 (100).

General procedures for the synthesis of alkyl chloride derivatives (9a-c)

To a suspension of NaH (0.16 g, 6.80 mmol) in dry DMF (15 mL), a solution in DMF (5 mL) of the appropriate 3,4-dihydroquinolin-2(1*H*)-one (**8a-c**) (2.7 mmol), was added in a dropwise manner, at 0 °C under a stream of N₂. After 30 min, 1-bromo-3-chloropropane (3 mmol, 0.29 mL) was added in a dropwise manner and the mixture was allowed to warm to room temperature and was stirred for 4 h. After cooling to 0 °C H₂O was added and the solvent was removed under reduced pressure. The residue was taken up with water and extracted with CH_2Cl_2 (3 × 15 mL). The organic layers were collected, dried over Na₂SO₄ and evaporated under reduced pressure to afford a crude residue as a brown solid.

1-(3-Chloropropyl)-3,4-dihydroquinolin-2(1*H*)-one (9a) was purified by column chromatography with $CH_2Cl_2/AcOEt$ (8:2) as eluent to provide a yellow oil (0.33 g, 55%); GC-MS *m/z* 225 (M⁺ + 2, 15), 223 (M⁺, 45), 188 (55), 132 (100).

1-(3-Chloropropyl)-5-methoxy-3,4-dihydroquinolin-2(1*H***)-one (9b) the crude residue was used for the next step with no purification (0.39 g, 58%); GC-MS m/z 255 (M⁺ + 2, 25), 253 (M⁺, 75), 218 (85), 162 (100).**

1-(3-Chloropropyl)-6-fluoro-3,4-dihydroquinolin-2(1*H***)-one (9c) was purified by column chromatography with CH₂Cl₂/AcOEt (9:1) as eluent to provide a colorless oil (0.42 g, 65%); GC-MS m/z 243 (M⁺ + 2, 15), 243 (M⁺, 45), 206 (60), 150 (100).**

Table of Elemental Analyses

	Calculated			Found		
Compound	С	Н	Ν	С	Н	N
4a	63.74	6.69	7.43	63.56	6.70	7.34
4b	61.99	6.69	6.88	62.10	6.73	7.00
4c	60.83	6.13	7.09	61.10	6.30	7.12
5a	70.15	7.07	7.01	70.30	7.20	7.11
5b	58.13	7.09	6.46	58.02	6.98	6.46
5c	56.94	6.57	6.64	57.08	6.51	6.91
6a	61.82	7.43	6.55	61.25	7.06	6.73
6b	59.81	6.73	5.58	59.81	6.43	5.66
6c	62.48	6.67	6.62	62.30	6.56	6.70
7a	61.82	7.55	6.55	62.03	7.43	6.60
7b	60.39	7.49	6.12	60.56	7.40	6.21
7c	59.33	7.02	6.29	59.24	7.13	6.40
10a	66.26	7.01	6.72	66.06	6.97	6.81
10b	60.58	7.25	5.89	60.32	6.97	5.95
10c	61.60	6.63	6.25	61.56	6.44	6.26
11a	62.23	7.38	6.31	62.13	7.29	6.32
11b	60.82	7.34	5.91	60.82	7.33	6.00
11c	59.80	6.87	6.06	59.56	6.85	6.08

Compound	Formula ^a	mp, °C	
4a	$C_{20}H_{24}N_2O_3$ ·HCl·0.25H ₂ O ^b	232-235	
4b	$C_{21}H_{26}N_2O_4$ ·HCl·0.75H ₂ O ^b	195-197	
4c	$C_{20}H_{23}N_2O_3$ ·HCl·0.25H ₂ O ^b	244-246	
5a	$C_{20}H_{26}N_2O_2{\cdot}2HCl{\cdot}0.75H_2O^b$	230-232	
5b	$C_{21}H_{28}N_2O_3{\cdot}2HCl{\cdot}0.25H_2O^b$	235-237	
5c	$C_{20}H_{25}N_2O_2F{\cdot}2HCl{\cdot}0.25H_2O^b$	248-250	
6a	$C_{22}H_{28}N_2O_3$ ·HCl·1.25H ₂ O ^b	129-132	
6b	$C_{23}H_{30}N_2O_4 \cdot (COOH)_2 \cdot 0.75H_2O^b$	119-121	
60	$C_{22}H_{27}N_2O_3F \cdot HCl \cdot 0.25H_2O^b$	126-129	
7a	$C_{22}H_{30}N_2O_2 \cdot 2HCl \cdot 0.75H_2O^b$	187-190	
7b	$C_{23}H_{32}N_2O_3 \cdot 2HCl \cdot 1.25H_2O^b$	174-176	
7c	$C_{22}H_{29}N_2O_2F{\cdot}2HCl{\cdot}0.25H_2O^b$	210-213	
10a	$C_{23}H_{28}N_2O_3\cdot HCl^b$	191-193	
10b	$C_{24}H_{30}N_2O_4\cdot HCl\cdot 1.6H_2O^b$	188-190	
10c	$C_{23}H_{27}N_2O_3F \cdot HCl \cdot 0.75H_2O^b$	225-227	
11a	$C_{23}H_{30}N_2O_2 \cdot 2HCl \cdot 0.25H_2O^b$	211-213	
11b	$C_{24}H_{32}N_2O_3 \cdot 2HCl \cdot 0.25H_2O^b$	181-183	
11c	$C_{23}H_{29}N_2O_2F{\cdot}2HCl{\cdot}0.25H_2O^b$	230-232	

Table of Physical Properties of Novel Compounds

^aElemental analyses for C, H, N were within ±0.4% of the theoretical values for the formulas given. ^bRecrystallized from MeOH.