Supporting Information

La-Mg mixed oxide as highly basic water resistant catalyst for utilization of CO2 in synthesis

of quinazoline-2,4(1H,3H)-dione

Kalidas B. Rasal; Ganapati D. Yadav*

1. La-Mg MO characterization

The catalyst was fully characterized by different techniques like XRD, FTIR, TGA, SEM, TPD and BET surface area and porosity. The powder XRD were recorded using a Bruker AXS, D8 discover instrument (USA) with Cu-K α (1.54Å) radiation over a range of 10-70° 2 θ value. FT-IR spectra were recorded using Perkin-Elmer instrument spectrum 100 series, using KBr pallet technique over a range of 400-4000 cm⁻¹. The TGA were recorded using NETZSCH STA 449 F-3, the sample was heated up to 750°C at the rate 20°C/min. The SEM images were obtained on a JEOL JSM 6380 LA instrument. The SEM image shows the nano composite formation. The CO₂ temperature programmed desorption analysis were performed to evaluate the total basicity of catalyst using Micromeritics (USA), equipped with TCD detector. The N₂ adsorption/desorption isotherm was obtained by using Tri-Star-II 2020 (Micromeritics, USA) instrument, initially sample was degassed for 2 h at 350°C and calculate the surface area pore size distribution.

2. IR of catalysts

a.

Figure S1: IR spectrum of La₂O₃

b. Pure MgO

Figure S2: IR spectra of pure MgO

3. XRD of reused catalyst

Figure S3: XRD of reused La-Mg MO

4. HPLC method forquinazoline-2,4(1H,3H)-dione

The reaction progress as well as purity of quinazolinedione was analyzed by following HPLC method;

Mobile phase A	:	Acetonitrile			
Mobile phase B	:	0.1%Trifluoroacetic acid (TFA) in deionized water			
Column used	:	Zorbax C18 [4.6 mm (id) x 250 mm (length) x 5µm (particle size)]			
Gradient program		Time	Mobile phase A	Mobile phase B	
		0	20	80	
		5	20	80	
		10	90	10	
		15	90	10	
		18	20	80	
		20	20	80	
Wavelength (λ_{max})	:	243nm			
flow rate	:	1.0 mL/min			
Diluent	:	Methanol			
sample	:	Calculated amount of sample + add minimum quantity of DMF to			
preparation		solubilize sample, then dilute up to mark with methanol (2000 ppm)			
retention time	:	2-aminobenzonitrile 4.2 min and quinazolinedione 10.7 min			

5. Characterization of Quinazoline-2,4(1H,3H)-dione derivatives

a) Quinazoline-2,4(1*H*,3*H*)-dione

i. IR spectra

Figure S4: FT-IR of Quinazoline-2,4(1H,3H)-dione

ii. GC-Mass spectra quinazoline-2,4(1*H*,3*H*)-diones

Figure S5: GC-MS of Quinazoline-2,4(1*H*,3*H*)-dione

H-NMR Spectra: (a) quinazoline-2,4(1H,3H)-diones

C¹³-NMR spectra: quinazoline-2,4(1*H*,3*H*)-diones

b) 5-chloro quinazoline-2,4(1H,3H)-dione

¹H-NMR

¹³C-NMR

c) 6-chloro quinazoline-2,4(1*H*,3*H*)-dione

¹H-NMR

¹³C NMR

(d) 7-Methyl quinazoline-2,4(1H,3H)-dione

¹H-NMR

¹³C-NMR

e) 6,7-Dimethoxy quinazoline-2,4(1*H*,3*H*)-dione

¹H-NMR

¹³C-NMR

f) 5-Fluoro quinazoline-2,4(1*H*,3*H*)-dione

¹H-NMR

¹³C-NMR

g) 8-Bromo-6-nitro quinazoline-2,4(1H,3H)-dione

¹H-NMR

¹³C-NMR

¹H-NMR

¹³C-NMR

i) 6-Nitro quinazoline-2,4(1*H*,3*H*)-dione

¹³C-NMR

