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Figure S1 The UC emission spectrum of the Yb3+/Tm3+ co-doped YAG phosphor 

under the excitation of 980 nm diode laser.
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Figure S2 The UC emission spectrum of the Yb3+/Tm3+ co-doped LaAlO3 phosphor 

under the excitation of 980 nm diode laser.
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Figure S3 The log-log plots of UC emission intensity of YAG: 0.1%Tm3+, 2%Yb3+ as 

a function of a 980 nm laser pumping power.
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Figure S4 The log-log plots of UC emission intensity of LaAlO3: 0.1%Tm3+, 2%Yb3+ 

as a function of a 980 nm laser pumping power.
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Figure S5 Temperature evolution of the Tm3+ blue UC emission spectra excited by 

980 nm pump laser for the YAG: 0.1%Tm3+, 2% Yb3+
 phosphor at 300 K, 400 K and 

500 K. 
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Figure S6 Temperature evolution of the Tm3+ blue UC emission spectra excited by 

980 nm pump laser for the LaAlO3: 0.1%Tm3+, 2% Yb3+
 phosphor at 300 K, 400 K 

and 500 K. 
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Figure S7 (a) The monolog plot of the FIR versus 1/T for the YAG phosphor; (b) FIR 

(I477/I485) of Tm3+ blue UC emissions for the 1G4(2)/1G4(1) → 
3H6 transitions as a 

function of temperature in the range of 303-573 K.
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Figure S8 (a) The monolog plot of the FIR versus 1/T for the LaAlO3 phosphor; (b) 

FIR (I472/I483) of Tm3+ blue UC emissions for the 1G4(2)/1G4(1) → 
3H6 transitions as a 

function of temperature in the range of 303-573 K.
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Figure S9 The sensor sensitivity S = dFIR/dT as a function of the temperature for 

YAG : 0.1%Tm3+, 2%Yb3+ phosphor. 
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Figure S10 The sensor sensitivity S = dFIR/dT as a function of the temperature for 

LaAlO3 : 0.1%Tm3+, 2%Yb3+ phosphor. 
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Figure S11 The UCL spectra of the blue bands 1G4(2)/1G4(1)→3H6 of Tm3+ with 

different pumping power for YAG: 0.1%Tm3+, 2%Yb3+. Inset: FIR as a function of 

laser pump power.
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Figure S12 The UCL spectra of the blue bands 1G4(2)/1G4(1)→3H6 of Tm3+ with 

different pumping power for LaAlO3: 0.1%Tm3+, 2%Yb3+. Inset: FIR as a function of 

laser pump power.



The relationship of chemical bond covalency with the upconversion luminescence 

as well as temperature sensing property.

The fluorescence intensity ratio of two upconversion emissions, which come from 

thermally coupled energy levels (TCLs) of rare earth ions, can be written as follows 

[1-4]:
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where I2 and I1 are the integrated intensities of the transitions of 1G4(2) → 3H6 and 

1G4(1) → 3H6, respectively (Tm3+). N2 and N1 the corresponding populations, and A2 

and A1 the spontaneous-emission rates of 1G4(2) and 1G4(1) states, respectively. The 

energy gap of 1G4(2) and 
1G4(1) is narrow, resulting in the electrons of 1G4(2) level are 

easily populated to the 1G4(1) by thermal excitation. Furthermore, the fluorescence 

intensity ratio (FIR) of TCLs can be written as follows [5]:
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where g2, g1 are the degeneracy 2J+1 of the 1G4(2) and 1G4(1) levels, respectively.  fiA

indicates the radiative transition probability from state to state based on Judd-Ofelt f i

theory [6,7] and can be written as follows:
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where  is the energy of transition between the two multiplets, ( =2, 4, 6)  )(U 

denotes the unit tensor operators of rank  and  is the J-O intensity parameters.  

The terms represent the reduced matrix 
2)( |)''''(4||||)(4|  JLCfUJCLf NN  

elements. In particular, the electric-dipole line strength C is expressed [6-8]:
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Then the FIR of 1G4(2) , 1G4(1)→3H6 transitions of Tm3+ can be given that
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In view of the fact that  approaches 1, B is mainly decided by Ωλ=2,4,6. Crystal 4
1

4
2 /

parameter Ωλ denotes some properties of materials. The Ω6 parameter depends on the 

rigidity of the medium in which the ions are situated. The Ω2 is related to the 

symmetry. It is sensitive to the change of constituent of materials, because crystal 

structures, bond lengths and covalency are different and then nephelauxetic effects are 

not the same. It`s more sensitive to the environments than others among J-O 

parameters. So the B is finally decided by Ω2. In fact, the Ω2 parameter is strongly 

affected by covalent chemical bonding, which has been studied by Jorgensen and 

Yang [4, 9]. In other words, the B value is strongly affected by covalent chemical 

bonding [10-12]. However, they just gave the qualitative dependence of the B value 

with the covalent chemical bonding. 

In fact, the sensor sensitivity can be written as follows:
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Generally, the energy gap  is decided by the even-parity of the crystal field of the E



hosts and related to the symmetries of the crystal system. Then the S is mainly 

determined by B. That is to say, the sensor sensitivity is proportional to the bond 

covalency, which is discussed in detail in the revised manuscript. According to the 

chemical bond theory, the covalent and ionic of chemical bond as follows [13]:cf if
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According to the equations (1)-(7) above, it is well known that the sensor sensitivity is 

related to B, which is strongly affected by covalent chemical bonding . Thus the cf

sensor sensitivity can be judged by analyzing the ligand covalency, which is our goal 

in this work.
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