Supporting Information

Sr- and Ni-doping in ZnO nanorods synthesized by simple wet chemical method as excellent materials for CO and CO₂ gas sensing

Parasharam M. Shirage^{1,†}, Amit Kumar Rana¹, Yogendra Kumar¹, Somaditya Sen¹, S. G. Leonardi² and G. Neri^{2,*}

¹Department of Metallurgical Engineering and Materials Science and Physics, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 453552, India ²Department of Engineering, University of Messina, Messina 98166, Italy.

†Author for correspondence (E-mail- pmshirage@iiti.ac.in, paras.shirage@gmail.com)

* Email: gneri@unime.it

Figure S1. N_2 adsorption/desorption isotherms of pure and doped ZnO (inset show the corresponding pore size distribution curve).

Sample	Surface Area (m ² /g)
ZnO	4.359
ZnO-Ni5%	12.029
ZnO-Ni10%	51.844
ZnO-Sr4%	0.729
ZnO-Sr8%	0.524

Table S1. Surface area values for the synthesized samples.

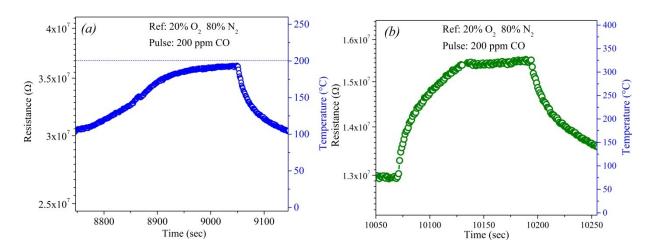


Figure S2. Dynamic responses of sensors (a) ZO and (b) Sr8ZO, to 200 ppm of CO at 200 °C.