Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

> Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry

Electronic Supplementary Information (ESI+)

Inorganic red perovskite quantum dots integrated blue chip: a promising candidate for high color-rendering in w-LED⁺

Bheeshma Pratap Singh,^{a‡} Shin-Ying Lin,^{a‡} Hung-Chia Wang,^a An-Cih Tang,^a Hung-Chun Tong,^b Ching-Yi Chen,^b Yu-Chun Lee,^b Tzong-Liang Tsai^b and Ru-Shi Liu^{ac*}

^aDepartment of Chemistry, National Taiwan University, Taipei-Taiwan-10617 ^bLextar Electronics corporation, Hsinchu, 300, Taiwan ^cDepartment of Mechanical Engineering and Graduate Institute of Technology, National Taipei University of Technology, Taipei, 10608-Taiwan Email: rsliu@ntu.edu.tw

Experimental Details

Materials

Cesium carbonate (Cs₂CO₃, Aldrich, 99.9%), lead bromide (PbBr₂, ABCR, 98%), lead iodide (PbI₂, ABCR, 99.999%), 1-octadecene (ODE, Aldrich, 90%), oleic acid (OA, Sigma-Aldrich, 90%) oleylamine (OAm, Acros Organics, 80%–90%), YAG:Ce³⁺ yellow (YAG04, Intematix) and silicon resin (Dow Corning OE-6631 A and B) were used during the studies.

Synthesis of inorganic red perovskite CsPb(Br_{0.3}I_{0.7})₃ (R-PQDs) via hot injection method Preparation of Cs oleate precursor

In a typical synthesis of the Cs oleate precursor, 0.407 g of Cs_2CO_3 , 1.25 mL of OA, and 20 mL of ODE were mixed in a three-necked bottle with 50 mL capacity. Moister and oxygen contents involved in the solutions were removed under vacuum condition at 120 °C for 1 h. Thereafter, the temperature of the above mixture solution was increased to 150 °C for 20 minutes under N₂ environment until Cs_2CO_3 was fully dissolved in oleic acid. The obtained Cs-

oleate precursor solution was then stored in a refrigerator and used to synthesize perovskite quantum dots.

Synthesis of R-PQDs

In a typical synthesis of the CsPb(Br_{0.3}I_{0.7})₃ R-PQDs (Cs, 20 mL of ODE, 0.808 g of PbBr₂, 0.2408 g PbI₂, 2.6 mL of OA, and 2.6 mL of OAm were mixed in a 50 mL three-necked bottle. Water and oxygen contents in the mixture solutions were removed under vacuum condition at at 120 °C for 30 min. Thereafter temperature of the solution was increased to 190 °C in a N₂ environment and maintained the temperature for the 10 min approximately. Further, 1.6 mL of Cs-oleate precursor, which was pre-heated at 120 °C, was injected into the prepared solution. After 5 s, the three-necked bottle was placed in an ice bath and cooled to room temperature. The crude solution was collected via centrifugation at 9000 rpm at 10 °C and finally the precipitate was dispersed in a hexane solution. Moreover, other compositions were prepared by following the same procedure as stated above with different constituents of PbBr₂ and PbI₂.

Fabrication of inorganic R-PQD integrated YAG: Ce phosphor-based White LEDs

In the light emitting diode (LED) packaging procedure, 0.25 mL of R-PQDs (10 mg/mL) in hexane solution was mixed with 0.5 g of silicon resin B. The resulting mixture was then heated to 40 °C for 1 h to remove the solvent. A half equal of silicon resin A (0.25 g) and red PQDs (0.025 g) were mixed with the previously prepared red QD silicon resin B mixture. The mixture was dropped onto a blue chip and thermally cured for 2 h at 100 °C in an oven after the bubbles were removed. The electroluminescent properties of the fabricated devices were determined by

using an integrating sphere spectroradiometer system (LHS-1000, Everfine) with an analyzer system (Everfine Photo-EINFO Co., Ltd.).

Fig. S1 (a) XRD patterns of commercial YAG:Ce, (b) polyhedral representaion of structral units in YAG:Ce and (c) SEM micrograph of YAG:Ce.

Fig. S2 Typical Gauss peak fitting and corresponding FWHM of CsPb(Br_{0.3}I_{0.7})₃ R-PQDs (650 nm peak max.) under 460 nm excitation wavelength.

Fig. S3 optical band gap estimation of $CsPb(Br_{1-x}I_x)_3$, x=0, 0.2, 0.4, 0.6, 0.7 and 1, using the Wood-Tauc model.

CsPb(Br _{1-x} l _x) ₃		
Х	Wavelength (nm)	FWHM (nm)
0.5	578	35
0.6	625	35
0.7	650	35
1	690	36

Table S1: composition, emission peak maxima and their corresponding FWHM

Fig. S4 (a) Excitation and emission spectra and (b) CIE coordinates of YAG:Ce phosphor.