Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

**Electronic Supporting Information:** 

Enhancement of plasmonic resonance through the exchange reaction on the surface of silver nanoparticles: Application for highly selective detection of triazophos pesticide in food and vegetable samples

Kamlesh Shrivas,<sup>a</sup>\* Nidhi Nirmalkar,<sup>a</sup> Archana Ghosale, Santosh Singh Thakur<sup>a</sup> and Ravi Shankar<sup>b,c</sup>

<sup>a</sup>Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, CG

<sup>b</sup>Nanoscience and Nanoengineering Program, South Dakota School of Mines and Technology, Rapid City, South Dakota-57701, USA

<sup>c</sup>Fujifilm Imaging Colorants, Inc. 233 Cherry Lane, New Castle, Delaware-19720, USA

\*Corresponding author: Email-kshrivas@gmail.com Phone: +91-7752-260488



## The structures of different type of pesticides

**Fig. S1.** Structure of pesticides (a) triazophos, (b) chlorpyrifos, (c) profenofos, (d) dichlorvos, (e) atrazine, (f) endrin, (g) dieldrin, (h) cypermethrin

| Tag | Symbol | Х         | Y         | Z         |
|-----|--------|-----------|-----------|-----------|
| 1   | S      | -2.207419 | -0.15162  | 2.133519  |
| 2   | Р      | -2.288713 | 0.080729  | 0.22762   |
| 3   | 0      | -0.898955 | 0.48222   | -0.491637 |
| 4   | 0      | -2.756796 | -1.127603 | -0.651685 |
| 5   | Ο      | -3.194342 | 1.252512  | -0.305938 |
| 6   | Ν      | 2.295763  | -0.390624 | -0.118825 |
| 7   | Ν      | 1.360166  | 0.564805  | -0.31562  |
| 8   | Ν      | 0.404097  | -1.440248 | -0.109116 |
| 9   | С      | 3.67476   | -0.074849 | -0.084919 |
| 10  | С      | 0.273757  | -0.121531 | -0.297403 |
| 11  | С      | -3.787083 | -2.04934  | -0.265722 |
| 12  | С      | -3.00131  | 2.618702  | 0.089654  |
| 13  | С      | 1.690246  | -1.565797 | -0.002797 |
| 14  | С      | 4.574291  | -0.939764 | 0.516259  |
| 15  | С      | 4.113436  | 1.106107  | -0.658351 |
| 16  | С      | 5.921795  | -0.629819 | 0.518774  |
| 17  | С      | 5.46223   | 1.408923  | -0.637428 |
| 18  | С      | -3.830589 | -3.133582 | -1.313201 |
| 19  | С      | -4.083888 | 3.436724  | -0.569161 |
| 20  | С      | 6.372883  | 0.544017  | -0.056628 |
| 21  | Н      | -3.549951 | -2.441239 | 0.711748  |
| 22  | Н      | -4.721975 | -1.507325 | -0.209506 |
| 23  | Н      | -3.05395  | 2.67489   | 1.16777   |
| 24  | Н      | -2.015698 | 2.925209  | -0.231306 |
| 25  | Н      | 2.209133  | -2.487839 | 0.138568  |
| 26  | Н      | 4.237237  | -1.837606 | 0.998048  |
| 27  | Н      | 3.403984  | 1.770166  | -1.108243 |
| 28  | Н      | -4.601525 | -3.854084 | -1.059235 |
| 29  | Н      | -4.055039 | -2.721194 | -2.289155 |
| 30  | Н      | -2.880662 | -3.650267 | -1.367356 |
| 31  | Н      | -3.965872 | 4.481448  | -0.30043  |
| 32  | Н      | -4.029372 | 3.352409  | -1.647503 |
| 33  | Н      | -5.065037 | 3.109949  | -0.247004 |
| 34  | Н      | 6.615624  | -1.303842 | 0.986279  |
| 35  | Н      | 5.800223  | 2.326446  | -1.082562 |
| 36  | Н      | 7.419658  | 0.784537  | -0.046177 |

XYZ Coordinates of Triazophos Calculated by DFT-(B3LYP)-3-21

## XYZ Coordinates of Triazophos with silver Calculated by DFT-(B3LYP)-3-21

| Tag | Symbol | Х          | Y          | Z          |
|-----|--------|------------|------------|------------|
| 1   | S      | -2.1082776 | -0.2530271 | 1.6854092  |
| 2   | Р      | -2.1457853 | 0.1812547  | -0.1862312 |
| 3   | 0      | -0.7383767 | 0.6470369  | -0.8282598 |
| 4   | 0      | -2.5998374 | -0.9233504 | -1.1991627 |
| 5   | 0      | -3.0336401 | 1.4095608  | -0.6115588 |
| 6   | Ν      | 2.4429925  | -0.2832607 | -0.4811216 |
| 7   | Ν      | 1.5166082  | 0.6943257  | -0.5953672 |
| 8   | Ν      | 0.5465924  | -1.3144502 | -0.6243614 |
| 9   | С      | 3.8223784  | 0.0172778  | -0.3838079 |
| 10  | С      | 0.4267978  | 0.0177078  | -0.6739591 |
| 11  | С      | -3.6428952 | -1.8735347 | -0.9360298 |
| 12  | С      | -2.8429885 | 2.7245249  | -0.0686486 |
| 13  | С      | 1.8294259  | -1.459761  | -0.5040718 |
| 14  | С      | 4.7040886  | -0.913055  | 0.1412799  |
| 15  | С      | 4.2794131  | 1.2493596  | -0.8185642 |
| 16  | С      | 6.0526638  | -0.6147509 | 0.2060824  |
| 17  | С      | 5.628832   | 1.5386086  | -0.7361932 |
| 18  | С      | -3.6681238 | -2.8399008 | -2.0936952 |
| 19  | С      | -3.9066318 | 3.6156663  | -0.6600055 |
| 20  | С      | 6.5221173  | 0.6103717  | -0.2311205 |
| 21  | Н      | -3.4295722 | -2.3688388 | -0.0009192 |
| 22  | Н      | -4.5762114 | -1.3339199 | -0.8427663 |
| 23  | Н      | -2.9194751 | 2.6661193  | 1.0079199  |
| 24  | Н      | -1.8489867 | 3.0563897  | -0.3336407 |
| 25  | Н      | 2.3406101  | -2.3952839 | -0.4504345 |
| 26  | Н      | 4.352052   | -1.854614  | 0.5172904  |
| 27  | Н      | 3.5833868  | 1.9625372  | -1.2105144 |
| 28  | Н      | -4.4479827 | -3.5778091 | -1.9347114 |
| 29  | Н      | -3.8687033 | -2.3244766 | -3.0248416 |
| 30  | Н      | -2.7197017 | -3.3546564 | -2.1818867 |
| 31  | Н      | -3.7896719 | 4.6250205  | -0.2790641 |
| 32  | Н      | -3.828399  | 3.6461151  | -1.7397528 |
| 33  | Н      | -4.8962945 | 3.2634891  | -0.3958841 |
| 34  | Н      | 6.7326298  | -1.3395973 | 0.6141406  |
| 35  | Н      | 5.9810799  | 2.4958312  | -1.0736499 |
| 36  | Н      | 7.569533   | 0.8409474  | -0.1723598 |
| 37  | Ag     | -0.5130651 | -0.3798938 | 1.2957064  |



**Fig.** S2. EDX spectrum of citrate capped AgNPs showing the presence of carbon and oxygen and silver peaks



Fig. S3. FTIR spectra of (a) citrate capped AgNPs and (b) citrate capped AgNPs with triazophos

## Optimization of the AgNPs-based colorimetric assay for detection of triazophos

NPs concentration is significant variable that influence the LSPR absorption signal intensity in UV-VIS spectra and detection of analyte. Therefore, we tested different concentration of AgNPs for optimum change of absorbance ratio for detection of triazophos by adding NPs solution in the range of 5-60 nM in six glass vial containing aqueous solution and triazophos (100 ngmL<sup>-1</sup>). The solution mixture was kept at 5 min at room temperature. The results obtained are shown in supporting information Fig S4 (a). There was increase in absorbance ratio as the concentration of NPs increased from 5 to 40 nM after no change in the absorbance ratio was obtained. The increase absorption ratio was due to the degree of aggregation increase with the number of NPs concentrations in aqueous solution. Therefore, 40 nM of AgNPs was found sufficient for obtaining a maximum change in absorption ratio for detection of triazophos from sample solution.

Reaction time is also optimized for effective detection of triazophos using AgNPs as a colorimetric probe. Therefore, the NPs solution mixed with triazophos pesticide was kept at different time intervals 1, 2, 3, 4, 5, 6 and 7 min at room temperature. The absorbance ratio of solution mixture was increased with increasing the reaction time from 1 to 5 min after no change was observed, as shown in supporting information Fig. S4 (b).

The pH of the solution mixture is found most important variable that favor the binding or interaction of target analyte molecules with the surface of NPs. The higher value of absorption ratio was obtained when the pH of solution mixture was 7.0 and 8.0 that favored the maximum interaction of triazophos molecule with NPs surface. At highly acidic conditions (pH 2.0 and 4.0), the color of solution was found to be grayish due to the self aggregation NPs caused by the

protonantion of citrate ions on the surface of AgNPs. Hence, al the experiments for detection of triazophos were performed in the pH range of 7.0.



**Fig. S4.** (a) Effect of concentration of AgNPs and (b) Effect of reaction time for detection of triazophos (100 ngmL<sup>-1</sup>) for 5 min reaction time at room temperature



Fig. S5. Reproducibility curve for determination of 100 ngmL<sup>-1</sup> of triazophos using AgNPs as a colorimetric probe for 5 min reaction time at room temperature