Noble Gas Supported B₃⁺ Cluster: Formation of Strong Covalent Noble Gas-Boron Bonds

Ranajit Saha,¹ Sudip Pan,¹ Subhajit Mandal,¹ Mesías Orozco,² Gabriel Merino^{*,2} and Pratim K. Chattaraj^{*,1}

¹Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur, 721302, India ²Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados Unidad Mérida. km 6 Antigua carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México * Corresponding authors: <u>gmerino@cinvestav.mx (GM)</u>,

pkc@chem.iitkgp.ernet.in (PKC)

SUPPORTING INFORMATIONS

Fig. 1-SI Contour plots of (a) electron density and (b) Laplacian of the electron density $(\nabla^2 \rho(\mathbf{r}))$ of $B_3Ng_3^+$ (Ng = He, Ne) clusters at the MP2/def2-TZVP/WTBS level. (Black solid lines in (a) shows $\rho(\mathbf{r})$ contours; blue solid lines and magenta dashed lines in (b) show the region with $\nabla^2 \rho(\mathbf{r}) > 0$ and region with $\nabla^2 \rho(\mathbf{r}) < 0$ respectively)

Fig. 2-SI. Plots of deformation densities, $\Delta \rho(\mathbf{r})$, of the pair-wise orbital interactions in of B₃Ng₃⁺ (Ng = He, Ne) clusters at the revPBE-D3/TZ2P//MP2/def2-TZVP level. The associated orbital interaction energies are given in kcal/mol. The colour code of the charge flow is red—blue.

Table 1-SI. Average ZPE corrected dissociation energy (D₀, kcal/mol) of Ng-B bond, for the dissociation process: $B_3Ng_3^+ \rightarrow B_3Ng_2^+ + 3Ng$, Ng-B and B-B bond distances (r, Å) in $B_3Ng_3^+$ at the CCSD(T)/def2-TZVP and MP2/def2-TZVP level, deviation (%) in bond length from the CCSD(T)/def2-TZVP.

$B_3Ng_3^+$	$\mathrm{D_0^{Ca}}$	D_0^{M}	r _{Ng-B} C	r _{Ng-B} M	%dev _{Ng-B} ^a	r _{B-B} ^C	$r_{B-B}{}^M$	%dev _{B-B} ^b
				·	-	1.598	1.603	0.314
He	0.1	0.1	2.751	2.728	0.8	1.596	1.601	0.313
Ne	0.9	1.1	2.464	2.348	4.7	1.590	1.590	0.000
Ar	12.9 (13.0°)	15.1	2.011	1.979	1.6	1.552	1.540	0.773
Kr	18.6	21.5	2.123	2.092	1.5	1.553	1.551	0.102
Xe	25.9	29.5	2.272	2.240	1.4	1.556	1.555	0.064
Rn	30.6	34.8	2.354	2.319	1.5	1.558	1.557	0.064

In the superscript 'C' and M stands for the CCSD(T) and MP2 level respectively; ^a the ZPE $r^{C} - r^{M}$

correction is taken from the MP2 level; ^b %dev = r^{c} X 100; ^c for only B₃Ar₃⁺ complex the ZPE correction at the CCSD(T) level is included.

Table 2-SI. ZPE corrected dissociation energy (D₀, kcal/mol) of Ng-B bonds, enthalpy change (Δ H, kcal/mol), and free energy change (Δ G, kcal/mol) at 298 K for the dissociation process B₃Ng₃⁺ \rightarrow B₃Ng₂⁺ + 3Ng at the MP2/def2-TZVP, MP2/def2-QZVP and MP2/CBS levels, HOMO-LUMO energy gap (Δ E_{H-L}, eV) , NPA charge at B and Ng centres (q, au), Wiberg bond indices of Ng-B and B-B bonds (WBI), Ng-B and B-B bond distances (r, Å) in B₃Ng₃⁺ at the MP2/def2-TZVP level.

Complex	$D_0{}^a$	ΔH	ΔG	$\Delta E_{\text{H-L}}$	$q_{\rm B}$	q_{Ng}	WBI _{Ng-B}	WBI _{B-B}	r _{Ng-B}	r _{B-B}	r_{B-Ng}^{cov}
											b
$B_3He_3^+$	(0.4)	(0.1)	(-10.6)	8.62	0.32	0.01	0.02	1.56	2.728	1.601	1.120
	{0.5}	{0.3}	{-11.7}								
	[0.6]	[0.4]	[-11.9]								
B_3Ne_3	(3.4)	(3.3)	(-12.1)	9.17	0.30	0.04	0.06	1.56	2.348	1.590	1.420
	{3.4}	{3.4}	{-12.8}								
	[3.4]	[3.4]	[-12.8]								

^avalues in first, second and third braces represents results at the MP2/def2-TZVP, MP2/def2-QZVP and MP2/CBS levels respectively. ${}^{b}r_{B}^{cov}_{-Ng}$ is calculated by taking summation of the covalent radii given in reference 36.

Table 3-SI. ZPE corrected successive dissociation energy (D_0^{BSSE} , kcal/mol) of M-Ng bonds, enthalpy change (Δ H, kcal/mol) at 298 K, free energy change (Δ G, kcal/mol) for the respective dissociation process at 298 K, NPA charges on B and Ng centres (q, au), Wiberg bond indices of Ng-B (WBI) of their respective mother moiety at the MP2/def2-TZVP level.

Na	$B_3Ng_3^{+a} \longrightarrow B_3Ng_2^{+} + Ng$				B ₃ N	$Mg_2^+ \rightarrow$	$a_2^+ \rightarrow B_3 Ng^+ + Ng$				$B_3Ng^+ \longrightarrow B_3^+ + Ng$				
ING	D_0^1	ΔH^1	ΔG^1	D_0^2	ΔH^2	ΔG^2	q_B^b	q_{Ng}	WBI	D_0^3	ΔH^3	ΔG^3	q_B^{b}	q_{Ng}	WBI
He	0.1	0.0	-4.1	0.0	0.0	-3.5	0.32	0.01	0.02	0.0	0.0	-2.9	0.32	0.01	0.02
Ne	0.4	1.0	-4.7	0.5	1.1	-3.0	0.28	0.05	0.08	-0.2	1.3	-4.5	0.22	0.11	0.01

^afor the NPA charges on B and Ng centres (q, au), Wiberg bond indices of Ng-B (WBI) of $B_3Ng_3^+$ see Table 2; ^bq_B is the charge of that boron atom which is bonded to Ng-atom; The superscript 1, 2 and 3 denote the first, second and third dissociation process.

Table 4-SI. Electron density descriptors (au) at the bond critical points (r_c) in between Ng and B atoms in $B_3Ng_3^+$ (Ng = He, Ne) obtained from the wave functions generated at the MP2/def2-TZVP/WTBS//MP2/def2-TZVP level. (All electron WTBS basis set is used only for Xe and Rn).

Complex	$\rho(r_c)$	$\nabla^2 \rho(\mathbf{r}_c)$	G(r _c)	$V\rho(r_c)$	H(r _c)
B ₃ He ₃ ⁺	0.004	0.016	0.003	-0.002	0.001
B ₃ Ne ₃ ⁺	0.016	0.048	0.012	-0.012	0.000

Table 5-SI. EDA results of the $B_3Ng_3^+$ (Ng = He, Ne) complexes considering Ng as one fragment and $B_3Ng_2^+$ as another fragment at the revPBE-D3/TZ2P// MP2/def2-TZVP level. All energy terms are in kcal/mol.

Complexs	ΔE^{Pauli}	ΔE^{elstat}	ΔE^{orb}	ΔE^{disp}	ΔE^{int}	ΔE^{σ}	ΔE^{rest}
B ₃ He ₃ ⁺	0.6	-0.1 (9.8)	-0.9 (64.3)	-0.4 (25.9)	-0.8	-0.9 (92.6)	-0.1
$B_3Ne_3^+$	5.9	-2.1 (25.9)	-5.6 (67.6)	-0.5 (6.4)	-2.4	-4.6 (83.3)	-0.9

Table 6-SI. The optimized structural parameters computed for $B_3Ng_2^+$ and B_3Ng^+ at the MP2/def2/TZVP level.

Na			B ₃	Ng_2^+	_		B ₃ Ng ⁺					
ING	r_1	r_2	r_3	α	β	γ	r_1	r_2	r ₃	α	β	γ
He	2.720	1.602	1.601	150.20	59.97	60.06	2.708	1.601	1.603	150.03	59.94	60.03
Ne	2.247	1.599	1.587	151.75	59.76	60.48	1.885	1.571	1.595	150.51	58.98	60.51
Ar	1.914	1.625	1.539	158.04	57.89	64.22	1.862	1.538	1.596	151.20	57.61	61.20
Kr	2.034	1.635	1.527	158.73	57.63	64.75	1.986	1.536	1.598	151.29	57.42	61.29
Xe	2.188	1.647	1.525	159.78	57.33	65.34	2.143	1.534	1.601	151.38	57.25	61.38
Rn	2.269	1.650	1.527	159.84	57.30	65.40	2.225	1.534	1.602	151.40	57.19	61.40

Cartesian coordinates

MP2/Def2-TZVP

$0.0000000 \quad 0.92548600 \quad 0.00000000$ В 0.0000000 0.92259500 0.00000000 В B_3^+ -0.80149400 -0.46274300 0.79899100 -0.46129800 0.00000000 В 0.00000000 В В 0.80149400 -0.46274300 0.00000000 В -0.79899100 -0.46129800 0.00000000 В 0.00000000 0.92425100 0.00000000 В 0.00000000 0.92163400 0.00000000 B₃He₃⁺ В -0.80042500 -0.46212500 0.00000000 В 0.79815800 -0.46081700 0.00000000 В 0.80042500 -0.46212500 0.00000000 В -0.79815800 -0.46081700 0.00000000 -3.18091800 -1.83650400 He 3.16332800 -1.82634800 0.00000000 He 0.00000000 0.0000000 3.65269700 0.00000000 He 0.0000000 3.67300800 0.00000000 He -3.16332800 -1.82634800 0.00000000 3.18091800 -1.83650400 0.00000000 He He В 0.0000000 0.91792600 0.00000000 В 0.0000000 0.91807300 0.00000000 $B_3Ne_3^+$ В -0.79494700 -0.45896300 0.00000000 В 0.79507400 -0.45903600 0.00000000 В 0.79494700 -0.45896300 0.00000000 В -0.79507400 -0.45903600 0.00000000 Ne 2.82831500 -1.63292900 0.00000000 Ne -2.92888900 -1.69099500 0.00000000 0.0000000 3.26585700 0.00000000 Ne 0.0000000 3.38198900 0.00000000 Ne Ne -2.82831500 -1.63292900 0.00000000 Ne 2.92888900 -1.69099500 0.00000000 В $0.0000000 \quad 0.89584900$ 0.0000000 0.89417700 0.00000000 В 0.00000000 $B_3Ar_3^+$ В 0.77438000 -0.44708800 0.00000000 В 0.77582800 -0.44792500 0.00000000 -0.77438000 -0.44708800 В -0.77582800 -0.44792500 В 0.00000000 0.00000000 Ar -2.48860900 -1.43679900 0.00000000 Ar -2.51736300 -1.45340000 0.00000000 0.0000000 2.90680000 0.0000000 2.87359800 Ar 0.00000000 Ar 0.00000000 2.48860900 -1.43679900 2.51736300 -1.45340000 Ar 0.00000000 Ar 0.00000000 В 0.0000000 0.89559400 0.00000000 В 0.0000000 0.89638000 0.00000000 $B_3Kr_3^+$ -0.77560700 -0.44779700В 0.00000000 В 0.77628800 -0.44819000 0.00000000 0.77560700 -0.44779700 В -0.77628800 -0.44819000 0.00000000 В 0.00000000 Kr 2.58765300 -1.49398200 0.00000000 Kr -2.61508200 -1.50981800 0.00000000 0.00000000 -2.58765300 -1.49398200 2.61508200 -1.50981800 Kr 0.00000000 Kr 0.0000000 2.98796400 0.00000000 Kr 0.0000000 3.01963700 0.00000000 Kr 0.00000000 0.0000000 0.89817100 В 0.0000000 0.89787200 В 0.00000000 $B_3Xe_3^+$ 0.77758000 -0.44893600 0.00000000 В 0.77783900 -0.44908500 0.00000000 В В -0.77758000 -0.44893600 В -0.77783900 -0.44908500 0.00000000 0.00000000 -2.71751400 -1.56895800 0.00000000 Xe -2.74575200 -1.58526000 0.00000000 Xe 2.71751400 -1.56895800 0.00000000 Xe 2.74575200 -1.58526000 0.00000000 Xe 0.0000000 3.13791500 0.00000000 Xe 0.0000000 3.17052100 0.00000000 Xe В 0.0000000 0.89903300 0.00000000 В 0.0000000 0.89939100 0.00000000 $B_3Rn_3^+$ В 0.77858500 -0.44951700 0.00000000 В 0.77889500 -0.44969500 0.00000000 В -0.77858500 -0.44951700 0.00000000 В -0.77889500 -0.44969500 0.00000000 -2.78650900 -1.60879200 0.00000000 -2.81733800 -1.62659100 0.00000000 Rn Rn Rn 2.78650900 -1.60879200 0.00000000 Rn 2.81733800 -1.62659100 0.00000000 0.0000000 3.21758400 0.00000000 0.0000000 3.25318200 Rn Rn 0.00000000

Ng

 $B_3Ng_2^+$

 B_3Ng^+

CCSD(T)/Def2-TZVP

He	В	0.00000000	0.00000000	1.30914100	В	0.00000000	0.80058100	-0.89031300
110	В	0.00000000	0.80124300	-0.07694300	В	0.00000000	-0.80058100	-0.89031300
	В	0.00000000	-0.80124300	-0.07694300	В	0.00000000	0.00000000	0.49810200
	He	0.00000000	-3.15289200	-1.44406800	He	0.00000000	0.00000000	3.20631000

	He	0.00000000	3.15289200	-1.44406800				
Ne	В	0.00000000	0.79939600	0.47513000	В	0.00000000	0.78533400	-1.58717400
110	В	0.00000000	-0.79939600	0.47513000	В	0.00000000	0.00000000	-0.19842700
	В	0.00000000	0.00000000	1.84630400	В	0.00000000	-0.78533400	-1.58717400
	Ne	0.00000000	2.71485900	-0.69914100	Ne	0.00000000	0.00000000	1.68638700
	Ne	0.00000000	-2.71485900	-0.69914100				
Δr	В	0.00000000	0.00000000	1.96078500	В	0.00000000	0.76913200	-1.99063500
1 11	В	0.00000000	0.81246100	0.66599100	В	0.00000000	0.00000000	-0.59185200
	В	0.00000000	-0.81246100	0.66599100	В	0.00000000	-0.76913200	-1.99063500
	Ar	0.00000000	-2.36242000	-0.45732900	Ar	0.00000000	0.00000000	1.27031200
	Ar	0.00000000	2.36242000	-0.45732900				
Kr	В	0.00000000	0.00000000	2.21293600	В	0.00000000	0.76782500	-2.52859800
131	В	0.00000000	0.81737700	0.92365200	В	0.00000000	-0.76782500	-2.52859800
	В	0.00000000	-0.81737700	0.92365200	В	0.00000000	0.00000000	-1.12674800
	Kr	0.00000000	-2.45522700	-0.28196100	Kr	0.00000000	0.00000000	0.85888100
	Kr	0.00000000	2.45522700	-0.28196100				
Xe	В	0.00000000	0.82350300	1.10706600	В	0.00000000	0.76684500	-2.87892600
110	В	0.00000000	-0.82350300	1.10706600	В	0.00000000	0.00000000	-1.47387300
	В	0.00000000	0.00000000	2.39116200	В	0.00000000	-0.76684500	-2.87892600
	Xe	0.00000000	-2.56872600	-0.21320800	Xe	0.00000000	0.00000000	0.66960400
	Xe	0.00000000	2.56872600	-0.21320800				
Rn	В	0.00000000	0.82493800	1.22595000	В	0.00000000	0.76690900	-3.16179000
1.11	В	0.00000000	-0.82493800	1.22595000	В	0.00000000	0.00000000	-1.75493400
	В	0.00000000	0.00000000	2.51098700	В	0.00000000	-0.76690900	-3.16179000
	Rn	0.00000000	-2.63385000	-0.14427000	Rn	0.00000000	0.00000000	0.46968100
	Rn	0.00000000	2.63385000	-0.14427000				