Supporting Information

Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression

M. Wang,^a Ilya V. Anoshkin,^a Albert G. Nasibulin,^{a, b, c} Robin H. A. Ras,^a Nonappa,^a Janne Laine,^d Esko I. Kauppinen,^a and Olli Ikkala^{*, a}

^aDepartment of Applied Physics, School of Science, Aalto University,
P.O.Box 15100, FI-00076 Espoo, Finland.
^bSkolkovo Insititute of Science and Technology, Nobel str. 3, Moscow, 143026, Russia
^cSaint-Petersburg State Polytechnical University, Department of Material Science,
Polytechnicheskaya 29, 195251, Saint-Petersburg, Russia
^dDepartment of Forest Products Technology, School of Chemical Technology,
Aalto University, P.O.Box 16300, FI-00076, Espoo, Finland.
E-mail:olli.ikkala@aalto.fi

Figure S1. Transmission electron microscopy images of FWCNTs dispersed in water.

Figure S2. Scanning electron microscopy images of pristine CNF aerogel and FWCNT/CNF 15/85 wt/wt aerogel.

Figure S3. Cyclic mechanical and electrical compression tests for FWCNT/CNF 25/75 wt/wt (a-d) and FWCNT/CNF 15/85 wt/wt aerogels (e-f).

Figure S1. Transmission electron microscopy image of dispersed FWCNT in water from a diluted suspension. It shows individualized FWCNT's diameter of 3.2 nm, as well as their bundles.

Figure S2. Scanning electron microscopy images of pristine CNF aerogel and FWCNT/CNF 15/85

wt/wt aerogels. The images show cellular structure without and with CNT in the networks.

Fig S3. (a) 100 cycled stress-strain curves up to strain 8% of FWCNT/CNF 25/75 wt/wt aerogel and the 16 first cycles compressive stress *vs*. time illustrated (inset). (b) The first and 100th cycles of compressive stress-strain curves of FWCNT/CNF 25/75 wt/wt aerogel. (c) 100 cycled resistance response *vs*. time under cyclic compression up to strain 8% of FWCNT/CNF 25/75 wt/wt aerogel. The insets show the 16 first cycles. (d) Fractional resistance reduction during cyclic compression of FWCNT/CNF 25/75 wt/wt aerogel. (e) 100 cycled stress-strain curves up to strain 8% of FWCNT/CNF 15/85 wt/wt aerogel. (f) 100 cycled resistance *vs*. time under cyclic compression up to strain 8% of FWCNT/CNF 15/85 wt/wt aerogel. (f) 100 cycled resistance *vs*. time under cyclic compression up to strain 8% of FWCNT/CNF 15/85 wt/wt aerogel. Resistance changes irreversibly of FWCNT/CNF 15/85 wt/wt aerogel upon loading and unloading. It gradually decreases under cyclic compression.