Electronic supplementary material

Hydrogen Bonding in the Alcohol–Ethylene Oxide and Alcohol–Ethylene Sulfide Complexes

Shanshan Tang, Hailiang Zhao, Lin Du*

Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China

e-mail: lindu@sdu.edu.cn

Figure S1. (A) Spectra of MeOH, EO, and their mixture in the 3300-3650 cm⁻¹ region. A 20 cm path length cell was used. (B) Spectra of the MeOH–EO complex in the v_{H}^{H} band region. (a) 26 Torr MeOH + 125 Torr EO; (b) 20 Torr MeOH + 90 Torr EO.

Figure S2. (A) Spectra of MeOH, ES, and their mixture in the 3300-3620 cm⁻¹ region. A 20 cm path length cell was used. (B) Spectra of the MeOH–ES complex in the v_{H}^{*} band region. (a) 39 Torr MeOH + 56 Torr ES; (b) 30 Torr MeOH + 49 Torr ES.

Figure S3. (A) Spectra of EtOH, EO, and their mixture in the 3300-3650 cm⁻¹ region. A 20 cm path length cell was used. (B) Spectra of the EtOH–EO complex in the $v_{\mathcal{H}}^{\mathcal{H}}$ band region. (a) 22 Torr EtOH + 127 Torr EO; (b) 18 Torr EtOH + 93 Torr EO.

Figure S4. (A) Spectra of EtOH, ES, and their mixture in the 3300-3620 cm⁻¹ region. A 20 cm path length cell was used. (B) Spectra of the EtOH–ES complex in the \mathcal{W}_{H} band region. (a) 30 Torr EtOH + 72 Torr ES; (b) 21 Torr EtOH + 54 Torr ES.

Figure S5. (A) The integrated absorbance of the OH-stretching band in the MeOH-EO, EtOH–EO and TFE–EO complexes as a function of the product of the MeOH/EtOH/TFE and EO pressures. A 20 cm path length cell was used. The integration regions for MeOH-EO, EtOH–EO and TFE–EO are 3398-3674, 3397-3658 and 3219-3659 cm⁻¹, respectively; (B) The integrated absorbance of the OH-stretching band in the MeOH-ES, EtOH–ES and TFE–ES complexes as a function of the product of the MeOH/EtOH/TFE and ES pressures. A 20 cm path length cell was used. The integration regions for MeOH-ES, EtOH–ES and TFE–ES are 3420-3628, 3371-3629 and 3259-3626 cm⁻¹, respectively.

Figure S6. The deconvolution fittings of the OH-stretching fundamental transition bands of MeOH–EO (a), MeOH–ES (b), EtOH–EO (c), EtOH–ES (d). TFE–EO (e) and TFE–ES (f)

EtOH-ES(g)TFE-ES(g)Figure S7. AIM plots of the complexes obtained with the B3LYP-D3 method. The bond criticalpoints and ring critical points are presented by the red and yellow balls, respectively.

Conformer	Method ^{<i>a</i>}	$\mathbf{r}_{(OH)}^{b}$	$\Delta r_{(OH)}^{c}$	$\mathbf{r}_{(\mathrm{HB})}^{d}$	$\theta_{(\mathrm{HB})}^{e}$
MeOH-EO	B3LYP	0.9693	0.0086	1.9205	161.6
	ωB97X-D	0.9654	0.0092	1.9069	156.9
EtOH $-$ EO (t)	B3LYP	0.9695	0.0084	1.9278	161.3
	ωB97X-D	0.9655	0.0090	1.9119	156.3
EtOH–EO (g)	B3LYP	0.9699	0.0080	1.9357	160.3
	ωB97X-D	0.9660	0.0085	1.9211	158.3
TFE-EO (g)	B3LYP	0.9750	0.0121	1.8294	172.9
	ωB97X-D	0.9716	0.0132	1.8093	164.8
MeOH-ES	B3LYP	0.9692	0.0085	2.4401	151.5
	ωB97X-D	0.9647	0.0085	2.4172	149.8
EtOH–ES (t)	B3LYP	0.9693	0.0082	2.4515	151.1
	ωB97X-D	0.9646	0.0081	2.4326	147.7
EtOH–ES (g)	B3LYP	0.9696	0.0077	2.4676	149.5
	ωB97X-D	0.9655	0.0080	2.4261	152.2
TFE-ES (g)	B3LYP	0.9747	0.0118	2.3456	168.0
	ωB97X-D	0.9707	0.0123	2.3128	156.3

Table S1. Selected optimized geometric parameters in the complexes (angles in degrees and bond lengths in Å)

^{*a*} aug-cc-pV(T+d)Z basis set for S and aug-cc-pVTZ basis set for the remaining atoms. ^{*b*} OH bond length. ^{*c*} $\Delta r_{(OH)} = r_{complex} - r_{alcohol}$, is the change in the OH bond length upon complexation. ^{*d*} Intermolecular hydrogen bond distance. ^{*e*} Intermolecular hydrogen bond angle, i.e., $\theta_{(O-H \cdots O)}$ and $\theta_{(O-H \cdots S)}$.

cale /	1	```	eq)		1		
Conformer	Method ^a	BE ^b	ZPVE	BSSE	$\Delta H_{ m calc}^{ heta}$	ΔG^{θ}_{calc}	$K_{ m eq}^{ m calc}$
	B3LYP	-14.5	5.1	0.4	-13.6	16.8	1.2×10 ⁻³
MeOH-EO	ωB97X-D	-19.3	5.5	0.6	-18.8	13.0	5.2×10 ⁻³
$E_{t} \cap H = E \cap (t)$	B3LYP	-14.4	4.6	0.4	-13.1	17.4	9.0×10 ⁻⁴
	ωB97X-D	-19.3	5.2	0.6	-18.6	14.9	2.4×10-3
$FtOH = FO(\alpha)$	B3LYP	-14.1	4.8	0.4	-12.8	17.9	7.3×10 ⁻⁴
Eton Eo (g)	ωB97X-D	-19.9	6.3	0.7	-19.9	18.6	5.4×10 ⁻⁴
$TFF - FO(\alpha)$	B3LYP	-21.1	4.7	0.7	-20.2	14.7	2.7×10 ⁻³
TTE EO (g)	ωB97X-D	-27.3	5.3	1.2	-27.2	10.2	1.6×10-2
MeOH-FS	B3LYP	-12.3	3.9	0.4	-10.9	18.8	5.1×10 ⁻⁴
MCOIT ES	ωB97X-D	-18.5	4.7	0.5	-17.8	16.8	1.1×10-3
EtOH-ES(t)	B3LYP	-12.1	3.5	0.5	-10.4	19.4	4.0×10 ⁻⁴
	ωB97X-D	-18.9	4.5	0.5	-18.0	18.1	6.6×10 ⁻⁴
	B3LYP	-11.8	3.6	0.4	-10.1	20.5	2.6×10-4
LIOIT L5 (g)	ωB97X-D	-19.8	5.1	0.6	-19.3	19.4	4.1×10 ⁻⁴
TFF-FS(q)	B3LYP	-16.8	3.2	0.7	-15.4	18.5	5.7×10-4
112 LS(g)	ωB97X-D	-25.0	3.9	1.1	-24.4	13.6	4.1×10 ⁻³

Table S2. Calculated binding energy (*BE*), enthalpy of formation $(\Delta H_{298K}^{\theta})$, Gibbs free energy of formation $(\Delta G_{calc}^{\theta})$ and equilibrium constant (K_{eq}^{calc}) at 298 K for the complexes

^{*a*} aug-cc-pV(T+d)Z basis set for S and aug-cc-pVTZ basis set for the remaining atoms. Energies are in kJ mol⁻¹. ^{*b*} BE corrected with ZPVE and BSSE.

Conformer		B3LYP	ωB97X-D
МеОН	𝒴/ cm ⁻¹	3829	3918
	fмеон	5.8×10 ⁻⁶	6.4×10 ⁻⁶
	$\frac{1}{10}$ cm ⁻¹	3825	3914
EtOIT(l)	$f_{\text{EtOH}(t)}$	5.4×10-6	6.0×10-6
$E_{1}OU(z)$	$\frac{10}{10}$ cm ⁻¹	3810	3896
EIOH (g)	$f_{\rm EtOH (g)}$	4.2×10 ⁻⁶	4.6×10-6
TEE (~)	$\frac{1}{2}$ cm ⁻¹	3806	3892
IFE (g)	$f_{\text{TFE}(g)}$	9.2×10-6	9.5×10-6
	𝒴/ cm ⁻¹	3656	3737
MeOH-EO	$\Delta \mathcal{V}/cm^{-1}b$	173	181
	f	9.5×10-5	8.7×10 ⁻⁵
	<i>f/f</i> _{MeOH}	16.4	13.6
	𝒴/ cm ⁻¹	3655	3736
EtOH $-$ EO (t)	$\Delta^{\mathcal{W}}$ / cm ^{-1 b}	170	178
	f	1.0×10-4	9.1×10 ⁻⁵
	$f/f_{\rm EtOH(t)}$	18.6	15.1
	V / cm^{-1}	3649	3733
EtOH–EO (g)	$\Delta \mathcal{V}/cm^{-1}b$	161	163
	f	8.6×10 ⁻⁵	6.9×10 ⁻⁵
	$f/f_{\text{EtOH}(g)}$	20.2	15.0
	$V''/ \text{ cm}^{-1}$	3553	3621
TFE-EO (g)	$\Delta^{\mathcal{V}}$ / cm ^{-1 b}	253	271
	f	1.5×10 ⁻⁴	1.4×10 ⁻⁴
	$f/f_{\text{TFE}(g)}$	16.5	14.3
	$\frac{1}{1}$ cm ⁻¹	3651	3749
MeOH-ES	$\Delta^{\mathcal{W}}$ / cm ^{-1 b}	177	169
	f	8.0×10 ⁻⁵	6.1×10 ⁻⁵
	<u>f/f_{MeOH}</u>	13.7	9.5
	v''/ cm^{-1}	3654	3752
EtOH $-$ ES (t)	$\Delta V/$ cm ^{-1 b}	171	162
	f	8.2×10 ⁻⁵	5.9×10 ⁻⁵
	$f/f_{\text{EtOH}(t)}$	15.2	9.8
	\mathcal{W}/cm^{-1}	3650	3736
EtOH $-$ ES (g)	$\Delta V// \text{cm}^{-1 b}$	160	161
	f	7.0×10 ⁻⁵	5.9×10 ⁻⁵
	$f/f_{\text{TFE}(g)}$	16.5	12.7
	$\frac{1}{100}$ cm ⁻¹	3547	3632
TFE-ES (g)	$\Delta V// \text{cm}^{-1 b}$	259	259
~~~	f	1.5×10-4	1.2×10-4
	$f/f_{\rm TFE (g)}$	16.1	12.6

Table S3. Calculated harmonic OH-stretching wavenumbers and oscillator strengths ^a

^{*a*} aug-cc-pV(T+d)Z basis set for S and aug-cc-pVTZ basis set for all the remaining atoms.  ${}^{b}\Delta \psi_{OH}^{a} = \psi_{alcohol}^{a} - \psi_{complex}^{b}$ .

	Conformer		$\Delta q(\mathrm{H})$	$\Delta E(\mathrm{H})$	$\rho(\text{BCP})$	$\nabla^2 \rho(\text{BCP})$
	MeOH-EO	О−Н…О	0.0365	0.0213	0.0278	0.0845
	EtOH $-$ EO ( $t$ )	О−Н…О	0.0363	0.0203	0.0273	0.0838
	EtOH $-$ EO (g)	О−Н…О	0.0398	0.0222	0.0268	0.0831
D21 VD	TFE-EO $(g)$	О−Н…О	0.0375	0.0240	0.0340	0.0908
DOLIP	MeOH-ES	O−H···S	0.0043	0.0114	0.0186	0.0404
	EtOH–ES $(t)$	O−H···S	0.0095	0.0149	0.0182	0.0400
	EtOH $-$ ES (g)	O−H···S	0.0119	0.0159	0.0176	0.0393
	TFE-ES $(g)$	$O-H\cdots S$	-0.0035	0.0097	0.0231	0.0417
	MeOH-EO	О−Н…О	0.0399	0.0228	0.0288	0.0882
	EtOH $-$ EO ( $t$ )	О−Н…О	0.0328	0.0207	0.0285	0.0879
	EtOH $-$ EO (g)	О−Н…О	0.0416	0.0259	0.0281	0.0862
OD07V D	TFE-EO $(g)$	О−Н…О	0.0457	0.0326	0.0362	0.0954
ω 59/λ-D	MeOH-ES	O−H···S	0.0136	0.0151	0.0195	0.0433
	EtOH $-$ ES ( $t$ )	O−H···S	0.0065	0.0135	0.0189	0.0429
	EtOH $-$ ES (g)	O−H···S	0.0120	0.0166	0.0190	0.0424
	TFE-ES $(g)$	O−H···S	0.0118	0.0224	0.0242	0.0459

Table S4. AIM parameters for the complexes (all values in a.u.) ^a

^{*a*} aug-cc-pV(T+d)Z basis set for S and aug-cc-pVTZ basis set for all the remaining atoms. All values are in a.u.

Table S5. NBO parameters for the alcohol–EO complexes at the B3LYP/aug-cc-pVTZ level ^a

NBO parameters	MeOH-EO	EtOH $-$ EO ( $t$ )	EtOH $-$ EO (g)	TFE-EO $(g)$
$\Delta q(\mathrm{H})$	0.02422	0.01856	0.01999	0.02087
$\Delta q(O)$	-0.02531	-0.02428	-0.02495	-0.03562
$\delta(n_{\rm O})$	1.986, 1.921	1.986, 1.921	1.986, 1.921	1.984, 1.919
$\delta(\sigma^{*}{}_{ ext{O-H}})$	0.0233	0.0221	0.0239	0.0310
$F^{(2)}$	31.76	31.00	30.34	48.87
$L_{i \rightarrow j^*}$	(6.78+24.98)	(6.57+24.43)	(6.49+23.85)	(12.80+36.07)
$c^{(0)} - c^{(0)}$	2.01	2.02	2.01	1.98
$\boldsymbol{\sigma}_{j^*} - \boldsymbol{\sigma}_i$	(1.22+0.79)	(1.23+0.79)	(1.22+0.79)	(1.19+0.79)
	0.102	0.101	0.100	0.129
$\langle arphi_{i}^{(0)}     \stackrel{  ext{}{}^{ }}{F}_{ ext{KS}}     arphi_{j^{st}}^{(0)}  angle$	(0.04+0.062)	(0.039+0.062)	(0.039+0.061)	(0.054+0.075)

^{*a*} The values in the parentheses give the individual contribution of the nonbonding orbitals of oxygen. The  $\delta(n_{pO})$  values are for each of the two lone pairs.  $E_{i \to j^*}^{(2)}$  is in kJ mol⁻¹, all other values are in a.u.

NBO parameters	MeOH-EO	EtOH $-$ EO ( $t$ )	EtOH $-$ EO (g)	TFE-EO $(g)$
$\Delta q(\mathrm{H})$	0.02305	0.01775	0.01861	0.01803
$\Delta q(O)$	-0.02592	-0.02515	-0.02533	-0.02967
$\delta(n_0)$	1.987, 1.920	1.987, 1.920	1.987, 1.920	1.984, 1.916
$\delta(\sigma^*_{ ext{O-H}})$	0.0232	0.0223	0.0240	0.0327
$F^{(2)}$	39.46	38.83	38.29	63.51
$L_{i \rightarrow j^*}$	(7.49+31.97)	(7.32+31.51)	(7.45+30.84)	(13.01+50.50)
$c^{(0)} - c^{(0)}$	2.35	2.36	2.35	2.31
$\boldsymbol{c}_{j^*} - \boldsymbol{c}_i$	(1.39+0.96)	(1.40+0.96)	(1.39+0.96)	(1.36+0.95)
$(0) + \overline{\Sigma} + (0)$	0.123	0.121	0.121	0.155
$\langle \varphi_i^{(0)}   F_{KS}   \varphi_{j^*}^{(0)} \rangle$	(0.045+0.078)	(0.044+0.077)	(0.045+0.076)	(0.058+0.097)

Table S6. NBO parameters for the alcohol-EO complexes at the wB97X-D/aug-cc-pVTZ level ^a

^{*a*} The values in the parentheses give the individual contribution of the nonbonding orbitals of oxygen. The  $\delta(n_{pO})$  values are for each of the two lone pairs.  $E_{i \to j^*}^{(2)}$  is in kJ mol⁻¹, all other values are in a.u.

**Table S7.** NBO parameters for the alcohol-ES complexes at the B3LYP/aug-cc-pVTZ level ^{*a*} ( $E_{i \rightarrow j^*}^{(2)}$  is in kJ mol⁻¹, all other values are in a.u.)

NBO parameters	MeOH-ES	EtOH–ES (t)	EtOH–ES (g)	TFE-ES (g)
$\Delta q(\mathrm{H})$	0.00780	0.00669	0.00826	0.00371
$\Delta q(S)$	-0.02145	-0.02137	-0.02293	-0.01486
$\delta(n_{\rm S})$	1.996, 1.923	1.996, 1.924	1.996, 1.925	1.994, 1.911
$\delta(\sigma^*_{ ext{O-H}})$	0.0286	0.0265	0.0280	0.0432
$F^{(2)}$	27.95	26.31	25.11	47.41
$L_{i \rightarrow j^*}$	(1.63+26.32)	(1.42+24.89)	(1.51+23.60)	(3.31+44.10)
$c^{(0)} - c^{(0)}$	1.83	1.84	1.83	1.80
$\boldsymbol{c}_{j^*}$ $\boldsymbol{c}_i$	(1.14+0.69)	(1.14+0.70)	(1.14+0.69)	(1.12+0.68)
$(0) + \overline{\Gamma} + (0)$	0.037	0.076	0.074	0.104
$\langle \varphi_i^{(0)}   F_{KS}   \varphi_{j^*}^{(0)} \rangle$	(0.019+0.060)	(0.018 + 0.058)	(0.018 + 0.056)	(0.027+0.077)

^{*a*} The values in the parentheses give the individual contribution of the nonbonding orbitals of oxygen. The  $\delta(n_{pO})$  values are for each of the two lone pairs.  $E_{i \to j^*}^{(2)}$  is in kJ mol⁻¹, all other values are in a.u.

NBO parameters	MeOH-ES	EtOH $-$ ES $(t)$	EtOH–ES (g)	TFE-ES $(g)$
$\Delta q(\mathrm{H})$	0.00822	0.00777	0.00879	0.00453
$\Delta q(\mathbf{S})$	-0.02106	-0.02133	-0.02229	-0.01645
$\delta(n_{\rm S})$	1.996, 1.926	1.996, 1.927	1.995, 1.926	1.995, 1.913
$\delta(\sigma^{*}{}_{ ext{O-H}})$	0.0270	0.0246	0.0280	0.0414
$F^{(2)}$	35.61	32.71	35.02	60.42
$L_{i \rightarrow j^*}$	(2.22+33.39)	(1.92+30.79)	(2.26+32.76)	(3.81+56.61)
$c^{(0)} - c^{(0)}$	2.17	2.18	2.17	2.12
$\boldsymbol{c}_{j^*} - \boldsymbol{c}_i$	(1.31+0.86)	(1.32+0.86)	(1.31+0.86)	(1.28+0.84)
$(0) + \overline{\mathbf{n}} + (0)$	0.099	0.094	0.098	0.127
$\langle \varphi_i^{(0)}   F_{KS}   \varphi_{j^*}^{(0)} \rangle$	(0.024+0.075)	(0.022 + 0.072)	(0.024+0.074)	(0.031+0.096)

**Table S8.** NBO parameters for the alcohol–ES complexes at the  $\omega$ B97X-D/aug-cc-pVTZ level ^{*a*} ( $E_{i \rightarrow j^*}^{(2)}$  is in kJ mol⁻¹, all other values are in a.u.)

^{*a*} The values in the parentheses give the individual contribution of the nonbonding orbitals of oxygen. The  $\delta(n_{pO})$  values are for each of the two lone pairs.  $E_{i \to j^*}^{(2)}$  is in kJ mol⁻¹, all other values are in a.u.