# Magnetic nanoparticles (MNPs)-supported 9-amino(9-deoxy)*epi*-quinidine organocatalyst for asymmetric α-amination of aldehydes

Tao Wu, Dandan Feng, Guangxin Xie and Xuebing Ma\*

### **Table of contents**

| 1. | Preparation of Fe <sub>3</sub> O <sub>4</sub> /PVP#QDNH <sub>2</sub> 2                      |
|----|---------------------------------------------------------------------------------------------|
| 2. | IR spectra2                                                                                 |
| 3. | TGA                                                                                         |
| 4. | N2 adsorption-desorption isotherm3                                                          |
| 5. | The core-shelled morphologies of Fe <sub>3</sub> O <sub>4</sub> /PVP@QDNH <sub>2</sub> (3)5 |
| 6. | The characterization of raw materials6                                                      |
| 7. | The NMR and HPLC characterization of $\alpha$ -amination products23                         |
| 8. | Determination of diastereoselectivity of α-amination<br>products                            |

#### 1. Preparation of Fe<sub>3</sub>O<sub>4</sub>/PVP#QDNH<sub>2</sub>



Fe<sub>3</sub>O<sub>4</sub>/PVP (0.25 g) was well-dispersed in 50 mL of ethanol under ultrasound irradiation, added aqueous ammonia (1.5 mL, 23%) and tetraethyl orthosilicate (0.24 g, 1.2 mmol). After being stirred at room temperature for 3 h, MPTMS (0.26 g, 1.3 mmol) was added slowly and stirred for another 24 h. Fe<sub>3</sub>O<sub>4</sub>/PVP/SiO<sub>2</sub>@MPTMS (0.44 g) was obtained by being separated magnetically, washed with ethanol (25 mL × 3) and dried at 60 °C under vacuum for 8 h. Under a N<sub>2</sub> atmosphere, a mixture of Fe<sub>3</sub>O<sub>4</sub>/PVP/SiO<sub>2</sub>@ MPTMS (0.44 g), QDNH<sub>2</sub> (0.32 g, 1.0 mmol) and AIBN (41.0 mg, 0.25mmol, once a day) in 15 mL of CHCl<sub>3</sub> was refluxed for four days and cooled to room temperature. The mousy Fe<sub>3</sub>O<sub>4</sub>/PVP#QDNH<sub>2</sub> (0.5 g) was separated magnetically, washed with CHCl<sub>3</sub> (20 mL × 3), ethanol (25 mL × 3) and dried at 50 °C under vacuum for 4 h. Based on the nitrogen content determined by elemental analysis, the loaded capacity of QDNH<sub>2</sub> was 0.39 mmol g<sup>-1</sup>.

The molar ratio of QDNH<sub>2</sub>-attached thioether (–S–) and free sulfydryl (–SH) in the outermost shell of various heterogeneous organocatalyst covered on TEOS-modified  $Fe_3O_4/PVP$  could be ascertained by the contents of N and S elements and shown in Table s1.

**Table S1** The molar ratio of QDNH<sub>2</sub>-attached thioether (-S-) and free sulfydryl (-SH) in the outermost shell of TEOS-modified Fe<sub>3</sub>O<sub>4</sub>/PVP

| Cat.                                                      | N<br>(%) | S<br>(%) | Molar ratio <sup>a</sup><br>( <i>m/n</i> ) | Weight loss<br>(% <sup>b</sup> /% <sup>c</sup> ) |
|-----------------------------------------------------------|----------|----------|--------------------------------------------|--------------------------------------------------|
| Fe <sub>3</sub> O <sub>4</sub> /PVP#QDNH <sub>2</sub>     | 1.62     | 6.58     | 1/4.3                                      | 19.7/22.9                                        |
| Fe <sub>3</sub> O <sub>4</sub> /PVP@QDNH <sub>2</sub> (1) | 1.42     | 3.99     | 1/1.8                                      | -                                                |
| Fe <sub>3</sub> O <sub>4</sub> /PVP@QDNH <sub>2</sub> (2) | 1.93     | 5.35     | 1/2.6                                      | -                                                |
| Fe <sub>3</sub> O <sub>4</sub> /PVP@QDNH <sub>2</sub> (3) | 2.50     | 8.00     | 1/3.2                                      | 30.2/32.1                                        |
| Fe <sub>3</sub> O <sub>4</sub> /PVP@QDNH <sub>2</sub> (4) | 1.97     | 6.06     | 1.3.0                                      | -                                                |

<sup>*a*</sup> Molar ratio of thioether and free sulfydryl based on elemental analysis of N and S. <sup>*b*</sup> Weight loss calculated from elemental analysis. <sup>*c*</sup> Weight loss detected by TGA in the 150–800 °C range.

### 1. IR spectra



Fig. S1 IR spectra of Fe<sub>3</sub>O<sub>4</sub>/PVP (a), Fe<sub>3</sub>O<sub>4</sub>/PVP/SiO<sub>2</sub>@MPTMS (b), Fe<sub>3</sub>O<sub>4</sub>/PVP#QDNH<sub>2</sub>(c) and Fe<sub>3</sub>O<sub>4</sub>/PVP@QDNH<sub>2</sub>(3) (d)

2. TGA



Fig. S2 Thermogravimetric curves of Fe<sub>3</sub>O<sub>4</sub>/PVP@QDNH<sub>2</sub>(3) (a), Fe<sub>3</sub>O<sub>4</sub>/PVP#QDNH<sub>2</sub> (b)

# 3. N2 adsorption-desorption isotherm







4. The core-shelled morphologies of Fe<sub>3</sub>O<sub>4</sub>/PVP@QDNH<sub>2</sub>(3)





# 5. The characterization of raw materials



Table S2 The properties of (2R, 3S)-2-methyl-4-nitro-3-phenylbutanal and its derivatives

| R                     | Syn/Anti | %ee Syn |
|-----------------------|----------|---------|
| Ph                    | 93:7     | >99     |
| 4-FPh                 | 96:4     | 99      |
| 4-ClPh                | 96:4     | >99     |
| 4-BrPh                | 95:5     | >99     |
| 4-CH <sub>3</sub> OPh | 99:1     | >99     |
| 3-CH <sub>3</sub> OPh | 96:4     | 98      |
| 3-CH <sub>3</sub> Ph  | 94:6     | >99     |
| 2-ClPh                | 87:13    | 96      |
| 2-CH <sub>3</sub> OPh | 92:8     | 98      |
| 2-CH <sub>3</sub> Ph  | 94:6     | 99      |
| 1-Naphthyl            | 91:9     | >99     |
| 2-Furyl               | 89:11    | 98      |

(2R, 3S)-2-methyl-4-nitro-3-phenylbutanal: syn/anti = 93:7, >99% ee syn, %ee syn was determined by HPLC analysis on Daicel Chiralpak OD-H column: heptane/*i*-PrOH = 80/20, flow rate 1.0 mL min<sup>-1</sup>,  $\lambda = 210$ nm: t<sub>R</sub> = 28.8 min (minor), t<sub>R</sub> = 38.4 min (major); <sup>†</sup> NMR (600 MHz, CDCl<sub>3</sub>, TMS, major diastereomer):  $\delta$  1.00 (d, J = 7.3 Hz, 3H, CH<sub>3</sub>), 2.74-2.84 (m, 1H, CHCH<sub>3</sub>), 3.79-3.85 (m, 1H, CHCH<sub>2</sub>), 4.77-4.81 (m, 2H, CH<sub>2</sub>), 7.16–7.21 (m, 2H, PhH), 7.27-7.30 (m, 1H, PhH), 7.32-7.35 (m, 2H, PhH), 9.71 (d, J = 1.5 Hz, 1H, CHO); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>, major diastereomer):  $\delta$  12.3 (CH<sub>3</sub>), 44.3 (CHCH<sub>2</sub>), 48.6 (CHCH<sub>3</sub>), 78.3 (CH<sub>2</sub>), 128.2, 128.3, 129.2, 129.3, 136.8 (Ph),

202.3 (CHO).





(2R, 3S)-3-(4-fluorophenyl)-2-methyl-4-nitrobutanal: syn/anti = 96:4, 99% ee syn, %ee syn was determined by HPLC analysis on Daicel Chiralpak AD-H column: heptane/*i*-PrOH = 95/5, flow rate 1.0 mL min<sup>-1</sup>,  $\lambda$  = 210 nm:  $t_R = 24.8 \text{ min}$  (major),  $t_R = 32.9 \text{ min}$  (minor); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, TMS, major diastereomer): δ 0.99-1.01 (m, 3H, CH<sub>3</sub>), 2.72-2.83 (m, 1H, CHCH<sub>3</sub>), 3.79-3.82 (m, 1H, CHCH<sub>2</sub>), 4.72-4.80 (m, 2H, CH<sub>2</sub>), 7.01-7.05 (m, 2H, ArH), 7.14-7.27 (m, 2H, ArH), 9.69 (s, 1H, CHO); <sup>13</sup>C C NMR (150 MHz, CDCl<sub>3</sub>, major diastereomer): δ 12.3 (CH<sub>3</sub>), 43.6 (CHCH<sub>2</sub>), 48.6 (CHCH<sub>3</sub>), 78.3  $NO_2$ (CH<sub>2</sub>), 116.2, 116.3, 129.9, 130.0, 132.6 (Ar), 202.1 (CHO).

Η





(2R, 3S)-3-(4-chlorophenyl)-2-methyl-4-nitrobutanal: syn/anti = 96:4, >99% ee syn, %ee syn was determined by HPLC analysis on Daicel Chiralpak AD-H column: heptane/*i*-PrOH = 95/5, flow rate 1.0 mL min<sup>-1</sup>,  $\lambda = 210$  nm:  $\mathfrak{k} = 26.2$  min (major),  $\mathfrak{t}_{R} = 35.5$  min (minor); <sup>1</sup>H NMR (600 MHz, CDC $\mathfrak{k}$ , TMS, major diastereomer):  $\delta 1.00$  (d, J = 7.3 Hz, 3H, CH<sub>3</sub>), 2.73-2.83 (m, 1H, CHCH<sub>3</sub>), 3.78-3.83 (m, 1H, CHCH<sub>2</sub>), 4.73-4.81 (m, 2H, CH<sub>2</sub>), 7.11-7.17 (m, 2H, ArH), 7.31-7.33 (m, 2H, ArH), 9.69 (d, J = 1.4 Hz, 1H, CHO); <sup>13</sup>C NMR (150 MHz, CDC $\mathfrak{l}_3$  major diastereomer):  $\delta 12.3$ (CH<sub>3</sub>), 43.7 (CHCH<sub>2</sub>), 48.4 (CHCH<sub>3</sub>), 78.1 (CH<sub>2</sub>), 129.5, 129.6, 129.7, 134.3, 135.4 (Ar), 201.9

(*C*HO).



S10



(2R, 3S)-3-(4-bromophenyl)-2-methyl-4-nitrobutanal: syn/anti = 95:5, >99%ee syn, %ee syn was determined by HPLC analysis on Daicel Chiralpak AD-H column: heptane/i-PrOH = 95/5, flow rate 0.9 mL



 $min^{-1}$ ,  $\lambda = 210 nm$ :  $t_R = 30.5 min (major)$ ,  $t_R = 40.3 min (minor)$ ; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, TMS, major diastereomer): δ 0.99 (d, J = 7.3 Hz, 3H, CH<sub>3</sub>), 2.72-2.81 (m, 1H, CHCH<sub>3</sub>), 3.76-3.81 (m, 1H, CHCH<sub>2</sub>), 4.73-4.80 (m, 2H, CH<sub>2</sub>), 7.05-7.11 (m, 2H, ArH), 7.46-7.48(m, 2H, ArH), 9.68 (d, J = 1.3 Hz, 1H, CHO); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>, major diastereomer): δ 12.3 (CH<sub>3</sub>), 43.7 (CHCH<sub>2</sub>), 48.4 (CHCH<sub>3</sub>), 78.0 (CH<sub>2</sub>), 122.3, 129.9, 130.0, 132.4, 135.9 (Ar), 201.9 (CHO).





(2R, 3S)-3-(4-methoxyphenyl)-2-methyl-4-nitrobutanal: syn/anti = 99:1, >99 %ee syn, %ee syn was determined by OCH<sub>3</sub> HPLC analysis on Daicel Chiralpak OD-H column: heptane/*i*-PrOH = 80/20, flow rate 1.0 mL min<sup>-1</sup>,  $\lambda = 220$  nm:  $t_R= 30.3$  min (minor), 31.7 min (major); <sup>1</sup>H NMR (600 MHz, CDCl );  $\delta 0.98$ (d, J = 7.2 Hz, 3H, CHCH<sub>3</sub>), 2.70-2.79 (m, 1H, CHCH<sub>3</sub>), 3.73-3.76 (m, 1H, CHCH<sub>2</sub>), 3.78 (s, 3H, OCH<sub>3</sub>), 4.70-4.78 (m, 2H, CH<sub>2</sub>), 6.85-6.87 (m, 2H, ArH), 7.07-7.13 (m, 2H, ArH), 9.69 (d, J =1.6 Hz, 1H, CHO); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub> major diastereomer):  $\delta$  12.2 (CHCH<sub>3</sub>), 43.6 (CHCH<sub>2</sub>), 48.8 (CHCH<sub>3</sub>), 55.4 (OCH<sub>3</sub>), 78.5 (CH<sub>2</sub>), 114.6, 114.7, 128.6, 129.3, 159.5 (Ar), 202.5 (CHO).





(2R, 3S)-3-(3-methoxyphenyl)-2-methyl-4-nitrobutanal: *syn/anti* = 96:4, 98 %ee *syn*, %ee *syn* was determined by HPLC analysis on Daicel Chiralpak OJ-H column: heptane/*i*-PrOH = 80/20, flow rate 1.0 mL



min<sup>-1</sup>,  $\lambda$  = 220 nm: t<sub>R</sub> = 53.5 min (minor), t<sub>R</sub> = 56.0 min (major); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, TMS, major diastereomer): δ 1.00 (d, *J* = 7.3 Hz, 3H, CHCH<sub>3</sub>), 2.72-2.82 (m, 1H, CHCH<sub>3</sub>), 3.75-3.81 (m, 4H, CHCH<sub>2</sub>, OCH<sub>3</sub>), 4.73-4.79 (m, 2H, CH<sub>2</sub>), 7.70-7.83 (m, 3H, ArH), 7.23-7.27

(m, 1H, Ar*H*), 9.69 (d, *J* = 1.6 Hz, 1H, CHO); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>, major diastereomer): δ 12.3 (CHCH<sub>3</sub>), 44.3 (CHCH<sub>2</sub>), 48.6 (CHCH<sub>3</sub>), 55.4 (OCH<sub>3</sub>), 78.2 (CH<sub>2</sub>), 113.2, 114.5, 120.3, 130.2, 138.4, 160.2 (Ar), 202.3 (CHO).





(2R, 3S)-3-(3-methylphenyl)-2-methyl-4-nitrobutanal: *syn/anti* = 94:6, >99 %ee *syn*, %ee *syn* was determined by



HPLC analysis on Daicel Chiralpak OD-H column: heptane/*i*-PrOH = 80/20, flow rate 1.0 mL min<sup>-1</sup>,  $\lambda$  = 210 nm: t<sub>R</sub> = 17.7 min (minor), t<sub>R</sub> = 19.5 min (major); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, major diastereomer): δ 0.99 (d, *J* = 7.3 Hz, 3H, CHCH<sub>3</sub>), 2.33(s, 3H, ArCH<sub>3</sub>), 2.72-2.81 (m, 1H, CHCH<sub>3</sub>), 3.74-3.80 (m, 1H, CHCH<sub>2</sub>), 4.72-4.79 (m, 2H, CH<sub>2</sub>), 6.95-7.00 (m, 2H, ArH), 7.08-7.09 (m, 1H, ArH), 7.20-7.23 (m, 1H, ArH), 9.70 (d, *J* = 1.7 Hz, 1H, CHO); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>, major diastereomer): δ 12.3 (CHCH<sub>3</sub>), 21.6 (ArCH<sub>3</sub>), 44.3 (CHCH<sub>2</sub>), 48.7 (CHCH<sub>3</sub>), 78.3 (CH<sub>2</sub>),

125.1, 125.2, 129.0, 129.1, 136.7, 138.9 (Ar), 202.5 (CHO).





(2R, 3S)-3-(2-chlorophenyl)-2-methyl-4-nitrobutanal: syn/anti = 87:13, 96 %ee syn, %ee syn was determined by HPLC analysis on Daicel Chiralpak AD-H column: heptane/*i*-PrOH = 95/5, flow rate 1.0 mL min<sup>-1</sup>,  $\lambda = 210$  nm: t<sub>R</sub> = 18.6 min (major), t<sub>R</sub> = 21.8 min (minor); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, TMS, major diastereomer):  $\delta$  1.03 (d, J = 7.4 Hz, 3H, CH<sub>3</sub>), 2.94-3.02 (m, 1H, CHCH<sub>3</sub>), 4.32-4.52 (m, 1H, CHCH<sub>2</sub>), 4.75-4.88 (m, 2H, CH<sub>2</sub>), 7.20-7.43 (m, 4H, ArH), 9.73 (d, J = 1.4 Hz,

H 1H, CHO); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>, major diastereomer): δ 12.4 (CH<sub>3</sub>), 40.1 (CHCH<sub>2</sub>), 48.0 (CHCH<sub>3</sub>), 76.9 (CH<sub>2</sub>), 127.6, 128.5, 129.4, 130.7, 134.3, 134.8 (Ar), 202.0 (CHO).





(2R, 3S)-3-(2-methoxyphenyl)-2-methyl-4-nitrobutanal: syn/anti = 92:8, 98 %ee syn, %ee syn was determined by HPLC analysis on Daicel Chiralpak AS-H column: heptane/*i*-PrOH = 98/2, flow rate 0.9 mL min<sup>-1</sup>,  $\lambda = 220$  nm: t<sub>R</sub> = 56.2 min (minor), t<sub>R</sub> = 58.2 min (major); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, TMS, major diastereomer):  $\delta 0.93$  (d, J = 7.3 Hz, 3H, CHCH<sub>3</sub>), 2.92-3.01 (m, 1H, CHCH<sub>3</sub>), 3.83 (s, 3H, OCH<sub>3</sub>), 4.02-4.07 (m, 1H, CHCH<sub>2</sub>), 4.72-4.88 (m, 2H, CH<sub>2</sub>), 6.88-6.92 (m, 2H, ArH), 7.06-7.12 (m, 1H, ArH), 7.25-7.28 (m, 1H, ArH), 9.70 (d, J = 1.8 Hz, 1H, CHO); <sup>13</sup>C NMR (150

MHz, CDCl<sub>3</sub>, major diastereomer): δ 12.2 (CHCH<sub>3</sub>), 40.7 (CHCH<sub>2</sub>), 47.3 (CHCH<sub>3</sub>), 55.5 (OCH<sub>3</sub>), 77.1 (CH<sub>2</sub>), 111.3, 121.1, 124.7, 129.4, 130.4, 157.5 (Ar), 202.9 (CHO).



(2R, 3S)-3-(2-methylphenyl)-2-methyl-4-nitrobutanal: syn/anti =94:6, 99 %ee syn, %ee syn was determined by HPLC analysis on Daicel Chiralpak OD-H column: heptane/*i*-PrOH = 80/20, flow rate 1.0 mL min<sup>-1</sup>,  $\lambda$  = 210 nm: t<sub>R</sub> = 22.2 min (minor), t<sub>R</sub> = 25.6 min (major); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, TMS, major diastereomer):  $\delta$  0.96 (d, J = 7.3 Hz, 3H, CHCH<sub>3</sub>), 2.39 (s, 3H, ArCH<sub>3</sub>), 2.73-2.82 (m, 1H, CHCH<sub>3</sub>), 4.09-4.13 (m, 1H, CHCH<sub>2</sub>), 4.63-4.81 (m, 2H, CH<sub>2</sub>), 7.09-7.22 (m, 4H, ArH), 9.72 (d, J = 1.9 Hz, 1H, CHO); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>, major diastereomer):  $\delta$  12.4 (CHCH<sub>3</sub>), 19.9 (ArCH<sub>3</sub>), 38.9 (CHCH<sub>2</sub>), 49.4 (CHCH<sub>3</sub>), 78.3 (CH<sub>2</sub>), 126.1, 126.9, 127.8, 131.3, 133.6, 137.2 (Ar), 202.6 (CHO).





(2R, 3S)-2-methyl-3-(naphthalen-1-yl)-4-nitrobutanal: syn/anti = 91:9, >99 %ee syn, %ee syn was determined by



HPLC analysis on Daicel Chiralpak AS-H column: heptane/*i*-PrOH = 90/10, flow rate 1.0 mL min<sup>-1</sup>,  $\lambda$  = 220 nm: t<sub>R</sub> = 40.0 min (minor), t<sub>R</sub> = 41.7 min (major); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, TMS, major diastereomer): δ 0.97 (d, *J* = 7.3 Hz, 3H, CH<sub>3</sub>), 2.96-2.99 (m, 1H, CHCH<sub>3</sub>), 4.75-4.94 (m, 3H, CHCH<sub>2</sub>, CH<sub>2</sub>), 7.34 (d, *J* = 7.1 Hz, 1H, ArH), 7.41-7.59 (m, 3H, ArH), 7.78-7.80 (m, 1H, ArH), 7.87 (d, *J* = 8.1 Hz, 1H, ArH), 8.10-8.13 (m, 1H, ArH), 9.74 (d, *J* = 1.5

Hz, 1H, CHO); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>, major diastereome): δ 12.6 (CH<sub>3</sub>), 37.7 (CHCH<sub>2</sub>), 49.1 (CHCH<sub>3</sub>), 78.1 (CH<sub>2</sub>), 122.6, 124.2, 125.5, 126.2, 127.0, 128.8, 129.4, 131.3, 133.6, 134.3 (Naphth), 202.5 (CHO).





(2R, 3R)-3-(furan-2-yl)-2-methyl-4-nitrobutanal: *syn/anti* = 89:11, 98 %ee *syn*, %ee *syn* was determined by HPLC analysis on Daicel Chiralpak AS-H column: heptane/*i*-PrOH = 90/10, flow rate 0.8 mL min<sup>-1</sup>,  $\lambda$ = 210 nm: t<sub>R</sub> = 33.6 min (minor), t<sub>R</sub> = 36.3 min (major); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, TMS, major diastereomer):  $\delta$  1.07 (d, *J* = 7.3 Hz, 3H, CH<sub>3</sub>), 2.78-2.84 (m, 1H, CHCH<sub>3</sub>), 4.07-4.11 (m, 1H, CHCH<sub>2</sub>), 4.68-4.77 (m, 2H, CH<sub>2</sub>), 6.13-6.21(m, 1H, =CH), 6.29-6.32(m, 1H, =CH), 7.34-7.36 (m, 1H, =CH), 9.70 (d, *J* = 0.8 Hz, 1H, CHO); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>, major diastereomer):  $\delta$ 

11.1 (CH<sub>3</sub>), 37.9 (CHCH<sub>2</sub>), 47.3 (CHCH<sub>3</sub>), 76.0 (CH<sub>2</sub>), 108.9, 110.6, 142.8, 150.2 (=CH), 201.7 (CHO).





# 6. The NMR and HPLC characterization of $\alpha$ -amination products



(1) Di-iso-propyl-1-[(2S, 3S)-2-methyl-4-nitro-1-oxo-3-phenylbutan-2-yl]hydrazine-1, 2-dicarboxylate



### (2) Di-iso-propyl-1-[(2S,3S)-2-methyl-4-nitro-1-oxo-3-(4-fluorophenyl)butan-2-yl]hydrazine-1, 2-dicarboxylate





(3) Di-iso-propyl-1-[(2S, 3S)-2-methyl-4-nitro-1-oxo-3-(4-chlorophenyl)butan-2-yl]hydrazine-1, 2-dicarboxylate





(4) Di-iso-propyl-1-[(2S, 3S)-2-methyl-4-nitro-1-oxo-3-(4-bromophenyl)butan-2-yl]hydrazine-1, 2-dicarboxylate





(5) Di-iso-propyl-1-[(2S, 3S)-2-methyl-4-nitro-1-oxo-3-(4-methoxyphenyl)butan-2-yl]hydrazine-1, 2-dicarboxylate



(6) Di-iso-propyl-1-[(2S, 3S)-2-methyl-4-nitro-1-oxo-3-(3-methoxyphenyl)butan-2-yl]hydrazine-1, 2-dicarboxylate



(7) Di-iso-propyl-1-[(2S, 3S)-2-methyl-4-nitro-1-oxo-3-(3-methylphenyl)butan-2-yl]hydrazine-1, 2-dicarboxylate



(8) Di-iso-propyl-1-[(2S, 3S)-2-methyl-4-nitro-1-oxo-3-(2-chlorophenyl)butan-2-yl]hydrazine-1, 2-dicarboxylate



(9) Di-iso-propyl-1-[(2S, 3S)-2-methyl-4-nitro-1-oxo-3-(2-methoxyphenyl)butan-2-yl]hydrazine-1, 2-dicarboxylate



(10) Di-iso-propyl-1-[(2S, 3S)-2-methyl-4-nitro-1-oxo-3-(2-methylphenyl)butan-2-yl]hydrazine-1, 2-dicarboxylate



(11)Di-iso-propyl-1-[(2S, 3S)-2-methyl-4-nitro-1-oxo-3-(naphthaen-1-yl)butan-2-yl]hydrazine-1, 2-dicarboxylate



(12)Di-*iso*-propyl-1-[(2S, 3S)-2-methyl-4-nitro-1-oxo-3-(furan-2-yl)butan-2-yl]hydrazine-1, 2-dicarboxylate



(13)Di-iso-propyl-1-[(2S, 3S)-2-propyl-4-nitro-1-oxo-3-(furan-2-yl)butan-2-yl]hydrazine-1, 2-dicarboxylate

### 7. Determination of diastereoselectivity of $\alpha$ -amination products

According to the reference (Org. Biomol. Chem., 2011, 9, 994–997), the *syn/anti* values of  $\alpha$ -amination products were determined by <sup>1</sup>NMR. It was found that there are four peaks in the 9.35–9.62 ppm range, which was attributed to hydrogen in –CHO attached to two pairs of enantiomers. Using

di-*iso*-propyl-1-[2-methyl-4-nitro-1-oxo-3-(4-fluorop-henyl)butan-2-yl]hydrazine-1, 2-dicarboxylate as an example shown in the following figure, the similar results of syn/anti were achieved by <sup>1</sup>H NMR and HPLC on Phenomenex column. The others were shown in above-mentioned ESI<sup>+</sup>.

