Electronic Supplementary Information

Quantum Mechanical Based Approaches for Predicting *p*K_a values of Carboxylic Acids: Evaluating the Performance of Different Strategies

Aida Mariana Rebollar-Zepeda and Annia Galano*

Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana-Iztapalapa, Av San Rafael Atlixco No.186, Col.Vicentina C.P.09340, México D.F.

Table of Contents

Table S1 . Error bars for pKa estimations with the different approaches, from asymmetric 95% confidence lower limits.	2
Table S2 . Error bars for pKa estimations with the different approaches, from asymmetric 95% confidence upper limits.	3
Table S3. Uncertainties for the slope and the intercept of the linear fits used in the FP method	4

^{*} To whom correspondence should be addressed. E-mail: agal@xanum.uam.mx

Scheme	B3LYP	BLYP	BH&HLYP	ВМК	M05-2X	PBE	PBEO	PW91	TPSS	
PCM										
А	1.14	1.71	1.92	1.10	0.98	1.37	1.38	1.63	1.07	
D	1.81	1.27	1.23	1.02	1.71	1.57	1.28	1.70	1.70	
E2	1.48	2.07	1.59	1.68	1.16	2.21	1.43	2.34	1.85	
SMD										
А	1.08	0.94	1.71	0.76	0.83	0.87	1.30	0.88	1.43	
D	1.14	1.13	1.01	0.96	1.18	1.34	0.76	1.16	1.07	
E3	2.10	1.92	0.86	0.66	0.84	1.99	0.74	1.87	1.69	
EN3	0.71	0.80	1.70	1.71	2.66	1.38	0.67	1.49	0.79	
FP										
	0.25	0.19	0.29	0.22	0.24	0.17	0.18	0.21	0.19	

Table S1. Error bars for pKa estimations with the different approaches, from asymmetric95% confidence lower limits.

Scheme	B3LYP	BLYP	BH&HLYP	ВМК	M05-2X	PBE	PBEO	PW91	TPSS	
PCM										
А	0.66	0.99	1.11	0.64	0.56	0.79	0.79	0.94	0.61	
D	1.05	0.73	0.71	0.59	0.99	0.90	0.74	0.98	0.98	
E2	0.85	1.20	0.92	0.97	0.67	1.28	0.82	1.35	1.07	
SMD										
А	0.62	0.54	0.99	0.44	0.48	0.50	0.75	0.51	0.83	
D	0.66	0.65	0.58	0.56	0.68	0.77	0.44	0.67	0.62	
E3	1.21	1.11	0.49	0.38	0.48	1.15	0.42	1.08	0.98	
EN3	0.41	0.46	0.98	0.99	1.53	0.79	0.39	0.86	0.46	
FP										
	0.15	0.11	0.17	0.12	0.14	0.10	0.11	0.12	0.11	

Table S2. Error bars for pKa estimations with the different approaches, from asymmetric95% confidence upper limits.

Table S3	Uncertainties t	for the slope ar	nd the interc	cept of the	linear fits	used in th	e FP
method.							

	B3LYP	BLYP	BH&HLYP	ВМК	M05-2X	PBE	PBEO	PW91	TPSS
т	0.04	0.03	0.04	0.04	0.05	0.04	0.04	0.04	0.04
Co	9.8	8.6	9.9	11.6	13.9	11.3	12.2	11.9	11.2