Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary information:

Highly Stretchable Strain Sensor Based on Electrospun Carbon Nanofibers

for Human Motion Monitoring

Yichun Ding,^a Jack Yang,^b Charles R. Tolle,^{b,c} and Zhengtao Zhu^{a, d*}

- ^{a.} Biomedical Engineering PhD Program, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
- ^{b.} Materials Engineering and Science PhD Program, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
- ^{c.} Department of Electrical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
- ^{d.} Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. E-mail: Zhengtao.Zhu@sdsmt.edu.

Fig. S1 SEM images of the electrospun PAN nanofibers.

Fig.S3 Optical images of strain sensor when unstretched (A) and after stretched for 350% strain (B).

Table.S1. Comparison of the performance of strain sensors in this work and in other reported works.The references are selected based on the materials and/or processes for strain sensors reported in recent

		years.			
Materials	Prepare/assembly method	Stretchability	Gauge factor	Cycles	Reference
Ag nanoparticles	transfer ink patterning	20%	2.05	1000	1
Ag nanowires	drop casting	70%	2-14	-	2
PANI/Au nanowire	Chinese penbrush writing	100%	13	10000	3
Si nanowires	vapor-liquid-solid process	50%	350	~500	4
Carbon nanotubes	dry-spun	900%	64	10000	5
	layer-by-layer drop casting	100%	62.7	1000	6
	drop at surface	530%	12-25	1000	7
graphene	soaking	800%	35	1000	8
	layer-by-layer assembly	150%	-	-	9
	embedding	100%	7.1	-	10
Electrospun carbon nanofibers	Electrospinning & sandwiching	300%	72	8000	This work

Reference

- 1. J. Lee, S. Kim, J. Lee, D. Yang, B. C. Park, S. Ryu and I. Park, *Nanoscale*, 2014, **6**, 11932-11939.
- 2. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu and I. Park, ACS Nano, 2014, **8**, 5154-5163.
- 3. S. Gong, D. T. H. Lai, Y. Wang, L. W. Yap, K. J. Si, Q. Shi, N. N. Jason, T. Sridhar, H. Uddin and W. Cheng, ACS Applied Materials & Interfaces, 2015, **7**, 19700-19708.
- 4. B.-C. Zhang, H. Wang, Y. Zhao, F. Li, X.-M. Ou, B.-Q. Sun and X.-H. Zhang, *Nanoscale*, 2016, **8**, 2123-2128.
- 5. S. Ryu, P. Lee, J. B. Chou, R. Xu, R. Zhao, A. J. Hart and S.-G. Kim, ACS Nano, 2015, **9**, 5929-5936.

- 6. E. Roh, B.-U. Hwang, D. Kim, B.-Y. Kim and N.-E. Lee, ACS Nano, 2015, **9**, 6252-6261.
- 7. M. A. Darabi, A. Khosrozadeh, Q. Wang and M. Xing, ACS Applied Materials & Interfaces, 2015, **7**, 26195-26205.
- 8. C. S. Boland, U. Khan, C. Backes, A. O'Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton and J. N. Coleman, *ACS Nano*, 2014, **8**, 8819-8830.
- 9. J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park and O. O. Park, ACS Applied Materials & Interfaces, 2015, **7**, 6317-6324.
- 10. C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C. Y. Foo, K. J. Chee and P.S. Lee, *Advanced Materials*, 2014, **26**, 2022-2027.