# Ctr-1 Mets7 motif inspiring new peptide ligands for Cu(I)-catalyzed asymmetric Henry reaction.

Sara Pellegrino<sup>\*†</sup>, Giorgio Facchetti<sup>‡</sup>, Alessandro Contini, Maria Luisa Gelmi, Emanuela Erba, Raffaella Gandolfi, Isabella Rimoldi<sup>\*</sup>

Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133

Milano

## SUPPORTING INFORMATION

Page S2 Computational Methods

- Page S3 Computational Additional Figures and Tables
- Page S7 Experimental Materials and Methods
- Page S7 Synthesis of Fmoc Protected Scaffold 4
- Page S10 Synthesis of Peptides Mets7, A, B, B1, C, S1
- Page S11 Synthesis of Cu-(I) complexes
- Page S12 Evaluation of different solvents in Henry catalyzed reaction
- Page S13 NMR data and discussion for peptide S1
- Page S20 ESI-MS spectra of peptides Mets7, A, B, B1, C, S1 and corresponding Cu-(I) complexes
- Page S27 Circular Dichroism and UV experiments
- Page S29 HPLC spectra of products from Henry reactions

Page S31 Bibliography

S1

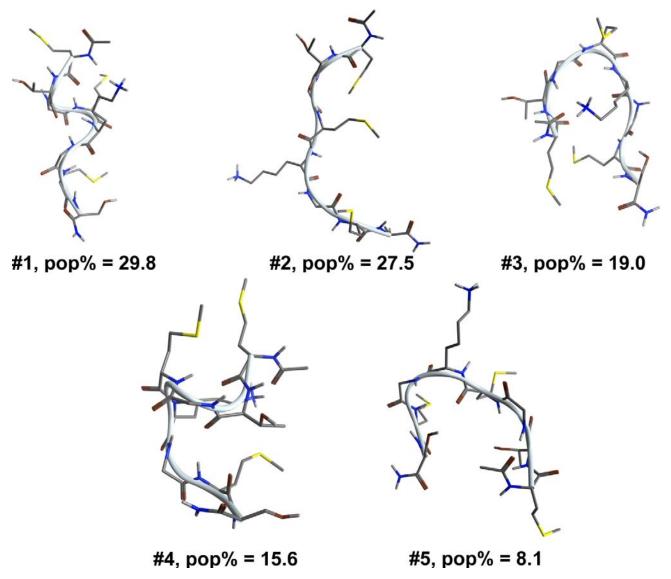
#### **Computational Methods**

Mets7 and S1 peptides were built with the *tLEaP* module of AMBER 14,<sup>1</sup> and REMD simulations were performed by starting from an extended conformation ( $\varphi = \psi = \omega = 180^{\circ}$ ). The parameters for scaffold X were obtained as described in previous articles for other non-natural aminoacids.<sup>2</sup> Simulations were conducted by using the ff99SBildn forcefield,<sup>3</sup> coupled with the GB-Neck2 (igb = 8) implicit solvation model for water and the *mbondi3* sets of radii.<sup>4</sup> The number of replicas (20) and the temperature range (from 260.0 to 673.9 K) were selected through the T-REMD server.<sup>5</sup> Each simulation was run for 100 ns, for a total of 2 µs. The trajectories at 302.8 K of the REMD simulations were extracted and analyzed over steps of 25 ns. Cluster analyses were conducted with *cpptraj*, sampling one every two frames by using the average-linkage algorithm and requesting five clusters; the pairwise mass-weighted RMSD on backbone heavy atoms was used as a metric. We considered a simulation converged when the population of the principal cluster differed less than 5% from that obtained in the previous 25 ns section of trajectory. Both simulations were already converged between 50 and 75 ns, so the discussion is based on the analysis of the subsequent 75-100 ns section. Clustering was also repeated by requesting 10 clusters, but no significant variation was observed in the quality and composition of principal clusters.

An H-bond analysis was also performed with *cpptraj*, setting a donor-acceptor distance threshold of 4.0 Å and an angle cutoff of 120°.

|             |                                     | φ1                                                                                                                          | ψ2                                                                                                                                                                  | φ2                                                                                                                                                                                                                                                                    | ψ3                                                                                                                                                                                                                                                                                        | φ3                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ψ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | φ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ψ5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | φ5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ψ6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>φ6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ψ7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | φ7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 131.5       | -54.4                               | -37.4                                                                                                                       | -65.1                                                                                                                                                               | -11.6                                                                                                                                                                                                                                                                 | -95.9                                                                                                                                                                                                                                                                                     | -17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 131.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                                     |                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 131.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 110.9       | -93.8                               | -21.4                                                                                                                       | -78.8                                                                                                                                                               | 54.7                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                         | 147.3                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 128.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 160.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 144.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                                     |                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                                                                                                                                       | 102.8                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 171.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 154.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -25.6       | -                                   | 5.6                                                                                                                         | -77.3                                                                                                                                                               | -                                                                                                                                                                                                                                                                     | -72.8                                                                                                                                                                                                                                                                                     | -20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -86.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 161.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -82.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 158.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -62.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 136.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 112.0                               |                                                                                                                             |                                                                                                                                                                     | 149.9                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 42.6        | -65.8                               | -51.0                                                                                                                       | -48.4                                                                                                                                                               | -40.4                                                                                                                                                                                                                                                                 | -84.1                                                                                                                                                                                                                                                                                     | -25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -95.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 133.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                     |                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 136.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -5.5        | -89.8                               | -3.3                                                                                                                        | 74.0                                                                                                                                                                | -9.3                                                                                                                                                                                                                                                                  | -59.6                                                                                                                                                                                                                                                                                     | 118.8                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -71.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 131.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -71.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                     |                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| pop%        | ψ1                                  | φ1                                                                                                                          | ψ2                                                                                                                                                                  | φ2                                                                                                                                                                                                                                                                    | ψ3                                                                                                                                                                                                                                                                                        | φ3                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ψ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | φ4*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ψ5*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | φ5*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ψ6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | φ6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ψ7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | φ7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 168.7       | -93.6                               | 165.3                                                                                                                       | 79.7                                                                                                                                                                | -                                                                                                                                                                                                                                                                     | -58.8                                                                                                                                                                                                                                                                                     | 148.4                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -66.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 135.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -81.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -56.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 168.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                                     |                                                                                                                             |                                                                                                                                                                     | 145.9                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 169.3       | -92.3                               | 163.6                                                                                                                       | 86.1                                                                                                                                                                | -                                                                                                                                                                                                                                                                     | -57.1                                                                                                                                                                                                                                                                                     | 157.3                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 176.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -61.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 151.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -91.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 171.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -63.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 169.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                                     |                                                                                                                             |                                                                                                                                                                     | 154.5                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -<br>4<br>- | 25.6<br>22.6<br>5.5<br>00p%<br>68.7 | 25.6       -         112.0         12.6       -65.8         5.5       -89.8         000%       ψ1         .68.7       -93.6 | 25.6       -       5.6         112.0       -         42.6       -65.8       -51.0         5.5       -89.8       -3.3 <b>oop% ψ1 φ1</b> 68.7       -93.6       165.3 | 25.6       -       5.6       -77.3         112.0       -       5.6       -77.3         12.6       -65.8       -51.0       -48.4         5.5       -89.8       -3.3       74.0         000% $\Psi$ 1 $\phi$ 1 $\Psi$ 2         68.7       -93.6       165.3       79.7 | $25.6$ -<br>$112.0$ $5.6$<br>$-77.3$ -<br>$149.9$ $12.6$ -65.8<br>$-51.0$ -48.4<br>$-40.4$ -40.4 $5.5$ -89.8<br>$-3.3$ -3.3<br>$74.0$ -9.3 $\mathbf{pop\%}$ $\mathbf{\Psi1}$ $\mathbf{\phi1}$ $\mathbf{\Psi2}$ $\mathbf{\phi2}$ $68.7$ -93.6<br>$-92.3$ 165.3<br>$163.6$ 79.7<br>$86.1$ - | $25.6$ -<br>$112.0$ $5.6$<br>$112.0$ $-77.3$<br>$149.9$ -<br>$-72.8$ $12.6$ $-65.8$<br>$-51.0$ $-48.4$<br>$-40.4$ $-40.4$<br>$-84.1$ $5.5$ $-89.8$<br>$-3.3$ $-3.3$<br>$74.0$ $-9.3$<br>$-9.3$ $-59.6$ $\mathbf{009\%}$ $\mathbf{\Psi1}$<br>$\mathbf{\Psi1}$ $\mathbf{\Psi2}$<br>$\mathbf{\Psi2}$ $\mathbf{\Psi2}$<br>$\mathbf{\Psi3}$ $\mathbf{\Psi3}$<br>$-58.8$ $68.7$<br>$-93.6$ $-93.6$ $165.3$<br>$165.3$ $79.7$<br>$-145.9$ $-58.8$<br>$145.9$ | $25.6$ -<br>$112.0$ $5.6$<br>$112.0$ $-77.3$<br>$149.9$ $-72.8$<br>$149.9$ $-20.2$ $12.6$ $-65.8$<br>$-51.0$ $-48.4$<br>$-40.4$ $-40.4$<br>$-84.1$ $-25.5$ $5.5$ $-89.8$<br>$-3.3$ $-3.3$<br>$74.0$ $-9.3$<br>$-9.3$ $-59.6$<br>$-59.6$ $118.8$ $\mathbf{000\%}$ $\mathbf{\Psi1}$<br>$\mathbf{\Psi1}$ $\mathbf{\Phi1}$<br>$\mathbf{\Psi2}$ $\mathbf{\Psi2}$<br>$\mathbf{\Psi2}$ $\mathbf{\Psi3}$<br>$\mathbf{\Psi3}$ $\mathbf{\Phi3}$ $68.7$ $-93.6$ $165.3$<br>$165.3$ $79.7$<br>$-145.9$ $-58.8$<br>$145.9$ $148.4$<br>$145.9$ $69.3$ $-92.3$ $163.6$<br>$86.1$ $ -57.1$<br>$157.3$ | $10.9$ $-93.8$ $-21.4$ $-78.8$ $54.7$ $ 147.3$ $ 102.8$ $ 5.6$ $-77.3$ $ 102.8$ $-20.2$ $-86.6$ $112.0$ $ 5.6$ $-77.3$ $ -72.8$ $-20.2$ $-86.6$ $12.6$ $-65.8$ $-51.0$ $-48.4$ $-40.4$ $-84.1$ $-25.5$ $-95.9$ $5.5$ $-89.8$ $-3.3$ $74.0$ $-9.3$ $-59.6$ $118.8$ $-71.9$ $\mathbf{pop\%}$ $\mathbf{\Psi1}$ $\mathbf{\phi1}$ $\mathbf{\Psi2}$ $\mathbf{\phi2}$ $\mathbf{\Psi3}$ $\mathbf{\phi3}$ $\mathbf{\Psi4}$ $68.7$ $-93.6$ $165.3$ $79.7$ $ -58.8$ $148.4$ $ 69.3$ $-92.3$ $163.6$ $86.1$ $ -57.1$ $157.3$ $-$ | $10.9$ $-93.8$ $-21.4$ $-78.8$ $54.7$ $-$<br>$102.8$ $147.3$<br>$102.8$ $-$<br>$171.9$ $128.1$<br>$171.9$ $25.6$ $-$<br>$112.0$ $5.6$<br>$112.0$ $-77.3$<br>$149.9$ $-$<br>$-72.8$<br>$149.9$ $-20.2$<br>$-20.2$ $-86.6$<br>$-86.6$ $161.5$<br>$161.5$ $12.6$ $-65.8$<br>$-51.0$ $-48.4$<br>$-40.4$ $-40.4$<br>$-84.1$ $-25.5$<br>$-95.9$ $-95.9$<br>$-22.5$ $5.5$ $-89.8$<br>$-3.3$ $-3.3$<br>$74.0$ $-9.3$<br>$-9.3$ $-59.6$<br>$-59.6$ $118.8$<br>$-71.9$ $-71.9$<br>$131.9$ $\mathbf{pop}\%$ $\mathbf{\Psi1}$<br>$\mathbf{\Psi1}$ $\mathbf{\Psi2}$<br>$\mathbf{\Psi2}$ $\mathbf{\Psi2}$<br>$\mathbf{\Psi3}$ $\mathbf{\Psi3}$<br>$\mathbf{\Psi3}$ $\mathbf{\Psi4}$<br>$\mathbf{\Psi4}$ $68.7$<br>$-93.6$ $165.3$<br>$165.3$ $79.7$<br>$-145.9$ $-58.8$<br>$148.4$<br>$-106.3$ $-71.9$<br>$106.3$ $-71.9$<br>$179.0$ $69.3$<br>$-92.3$ $163.6$ $86.1$<br>$ -57.1$<br>$157.3$ $-$<br>$157.3$ $-$<br>$176.9$ | $10.9$ $-93.8$ $-21.4$ $-78.8$ $54.7$ $-$<br>$102.8$ $147.3$<br>$102.8$ $-$<br>$171.9$ $128.1$<br>$171.9$ $75.5$ $25.6$ $-$<br>$112.0$ $5.6$<br>$112.0$ $-77.3$<br>$149.9$ $-$<br>$149.9$ $-20.2$<br>$-72.8$<br>$149.9$ $-86.6$<br>$-82.5161.5-82.542.6-65.8-51.0-48.4-40.4-84.1-25.5-95.9-95.9-22.5-98.355.5-89.8-3.3-74.0-9.3-59.6-59.6118.8-71.9-71.9131.991.3\mathbf{pop\%}\mathbf{\Psi1}\mathbf{\Psi1}\mathbf{\Psi2}\mathbf{\Psi2}\mathbf{\Psi3}-145.9\mathbf{\Phi3}\mathbf{\Psi4}\mathbf{\Phi4*}\mathbf{\Psi5*}68.7-93.6165.3-92.379.7-145.9-58.8-58.8148.4-106.3---66.469.3-92.3163.686.1---57.1157.3-157.3--176.9-61.2$ | $10.9$ $-93.8$ $-21.4$ $-78.8$ $54.7$ $-$<br>$102.8$ $147.3$<br>$102.8$ $-$<br>$171.9$ $128.1$<br>$171.9$ $75.5$ $160.2$<br>$160.2$ $25.6$ $-$<br>$112.0$ $5.6$<br>$112.0$ $-77.3$<br>$149.9$ $-$<br>$149.9$ $-72.8$<br>$149.9$ $-20.2$<br>$-86.6$ $161.5$<br>$161.5$ $-82.5$<br>$-82.5$ $158.5$<br>$158.5$ $12.6$ $-65.8$<br>$-51.0$ $-48.4$<br>$-40.4$ $-84.1$<br>$-25.5$ $-95.9$<br>$-95.9$ $-22.5$<br>$-98.3$ $98.3$<br>$-9.7$ $5.5$ $-89.8$<br>$-3.3$ $-3.3$<br>$74.0$ $-9.3$<br>$-9.3$ $-59.6$<br>$-59.6$ $118.8$<br>$-71.9$ $-71.9$<br>$131.9$ $91.3$<br>$-9.7$ $\mathbf{opp\%}$ $\Psi 1$<br>$\Psi 1$ $\Psi 2$<br>$\Psi 2$ $\mathbf{\varphi} 2$<br>$-93.6$ $\mathbf{\psi} 3$<br>$165.3$ $\mathbf{\varphi} 3$<br>$-145.9$ $-75.8$<br>$-58.8$ $148.4$<br>$-$<br>$106.3$ $-$<br>$-$<br>$106.3$ $-66.4$<br>$135.3$ $69.3$ $-92.3$ $163.6$ $86.1$<br>$ -$<br>$-57.1$ $157.3$ $-$<br>$157.3$ $-$<br>$176.9$ $-61.2$ | $10.9$ $-93.8$ $-21.4$ $-78.8$ $54.7$ $-$<br>$102.8$ $147.3$<br>$102.8$ $-$<br>$171.9$ $128.1$<br>$171.9$ $75.5$ $160.2$<br>$112.7$ $-$<br>$112.7$ $25.6$ $-$<br>$112.0$ $-$<br>$112.0$ $-77.3$<br>$149.9$ $-$<br>$149.9$ $-20.2$<br>$149.9$ $-86.6$ $161.5$<br>$-82.5$ $-82.5$ $158.5$<br>$-62.5$ $-62.5$ $12.6$ $-65.8$<br>$-51.0$ $-48.4$<br>$-40.4$ $-84.1$<br>$-40.4$ $-25.5$<br>$-95.9$ $-95.9$<br>$-22.5$ $-22.5$<br>$98.3$ $98.3$<br>$-9.7$ $-136.9$ $5.5$ $-89.8$<br>$-3.3$ $-3.3$<br>$74.0$ $-9.3$<br>$-9.3$ $-59.6$ $118.8$<br>$-71.9$ $-71.9$<br>$131.9$ $91.3$<br>$91.3$ $-9.7$<br>$-121.6$ $\mathbf{pop\%}$ $\mathbf{\Psi1}$<br>$\mathbf{\Psi1}$ $\mathbf{\Psi2}$<br>$\mathbf{\Psi2}$ $\mathbf{\Psi2}$<br>$\mathbf{\Psi3}$ $\mathbf{\Phi3}$<br>$\mathbf{\Psi4}$ $\mathbf{\Phi4*}$<br>$\mathbf{\Psi5*}$<br>$\mathbf{\Psi5*}$ $\mathbf{\Phi5*}$<br>$\mathbf{\Psi6}$ $68.7$<br>$-93.6$ $165.3$<br>$79.7$ $-$<br>$145.9$ $-58.8$ $148.4$<br>$-$<br>$106.3$ $-$<br>$179.0$ $-66.4$<br>$135.3$ $-81.1$<br>$-81.1$ $69.3$<br>$-92.3$ $163.6$<br>$86.1$ $-$<br>$-$<br>$-57.1$ $157.3$ $-$<br>$176.9$ $-61.2$ $151.0$ $-91.8$ | $10.9$ $-93.8$ $-21.4$ $-78.8$ $54.7$ $-$<br>$102.8$ $147.3$<br>$102.8$ $-$<br>$171.9$ $128.1$ $75.5$ $160.2$<br>$112.7$ $-$<br>$112.7$ $25.6$ $-$<br>$112.0$ $5.6$<br>$112.0$ $-77.3$<br>$149.9$ $-$<br>$149.9$ $-72.8$<br>$149.9$ $-20.2$<br>$-86.6$ $-86.5$ $161.5$<br>$-82.5$ $-82.5$ $158.5$<br>$-62.5$ $-62.5$<br>$136.3$ $42.6$ $-65.8$<br>$-51.0$ $-48.4$<br>$-40.4$ $-40.4$<br>$-84.1$ $-25.5$<br>$-95.9$ $-95.9$<br>$-92.5$ $-22.5$<br>$98.3$ $98.3$<br>$-9.7$ $-$<br>$-121.6$ $55.5$ $-89.8$<br>$-3.3$ $-3.3$<br>$74.0$ $-9.3$<br>$-9.3$ $-59.6$<br>$-59.6$ $-71.9$<br>$118.8$ $-71.9$<br>$-71.9$ $131.9$<br>$91.3$ $-9.7$<br>$-9.7$ $-$<br>$-21.6$ $\mathbf{p0p\%}$ $\mathbf{\psi1}$<br>$\mathbf{\psi1}$ $\mathbf{\psi1}$<br>$\mathbf{\psi1}$ $\mathbf{\psi2}$<br>$\mathbf{\psi2}$ $\mathbf{\psi3}$<br>$\mathbf{\psi3}$ $\mathbf{\psi4}$<br>$\mathbf{\psi4}$ $\mathbf{\psi5}^*$<br>$\mathbf{\psi5}^*$ $\mathbf{\phi6}$<br>$\mathbf{\psi6}$ $68.7$<br>$-93.6$ $165.3$<br>$79.7$ $-$<br>$-145.9$ $-58.8$<br>$145.9$ $-$<br>$-58.8$ $-$<br>$145.9$ $-$<br>$-166.4$ $135.3$<br>$-81.1$ $-81.1$<br>$177.2$ $69.3$<br>$-92.3$ $163.6$ $86.1$<br>$ -$<br>$-57.1$ $157.3$<br>$ -$<br>$157.3$ $-$<br>$ -66.4$<br>$176.9$ $-91.8$ $171.1$ | $10.9$ $-93.8$ $-21.4$ $-78.8$ $54.7$ $-$<br>$102.8$ $147.3$<br>$102.8$ $-$<br>$171.9$ $128.1$ $75.5$ $160.2$<br>$112.7$ $-$<br>$112.7$ $144.3$<br>$154.8$ $25.6$ $-$<br>$112.0$ $5.6$<br>$112.0$ $-77.3$<br>$149.9$ $-$<br>$149.9$ $-72.8$<br>$149.9$ $-20.2$<br>$-20.2$ $-86.6$ $161.5$<br>$-82.5$ $-82.5$<br>$158.5$ $-62.5$<br>$-62.5$ $136.3$<br>$-128.4$ $22.6$ $-65.8$<br>$-51.0$ $-48.4$<br>$-40.4$ $-84.1$<br>$-25.5$ $-25.5$<br>$-95.9$ $-22.5$<br>$-98.3$ $50.4$<br>$-136.9$ $-$<br>$136.9$ $-$<br>$133.8$ $50.9$<br>$128.4$ $55.5$ $-89.8$<br>$-3.3$ $-3.3$<br>$-74.0$ $-9.3$<br>$-9.3$ $-59.6$<br>$-59.6$ $118.8$<br>$-71.9$ $-71.9$<br>$131.9$ $91.3$<br>$-9.7$ $-9.7$<br>$-121.6$ $27.3$<br>$-71.3$ $-71.3$<br>$121.6$ $\mathbf{pop}^{\bullet}$ $\mathbf{\Psi1}$<br>$\mathbf{\Psi1}$ $\mathbf{\Psi2}$<br>$\mathbf{\Psi2}$ $\mathbf{\Psi2}$<br>$\mathbf{\Psi3}$ $\mathbf{\Phi3}$<br>$\mathbf{\Psi4}$ $\mathbf{\Phi4^{*}$<br>$\mathbf{\Psi5^{*}$ $\mathbf{\Phi5^{*}$<br>$\mathbf{\Psi6}$ $\mathbf{\Phi6}$<br>$\mathbf{\Psi7}$ $68.7$<br>$-93.6$ $165.3$<br>$-97.7$ $-$<br>$-145.9$ $-57.1$<br>$145.9$ $-$<br>$-57.1$ $-$<br>$157.3$ $-$<br>$-$<br>$-$<br>$106.3$ $-61.2$<br>$-61.2$ $-91.8$<br>$-91.8$ $171.1$<br>$-63.4$ |

**Table TS1**. Values of  $\psi$  and  $\phi$  Dihedrals (deg.) for each Representative Geometry Obtained from the Cluster Analysis of the 75-100 nssection of the 302.8 K REMD trajectory for Mets7 and S1


S3

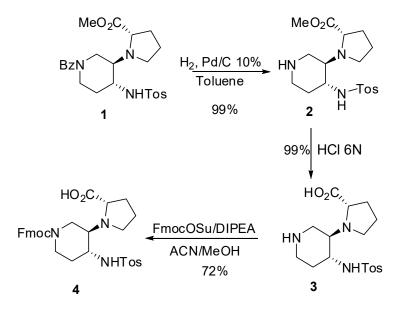
| #3 | 156.0  | -80.4 | 164.9 | 63.3  | -     | -86.9 | 155.9 | -     | 175.0 | -73.2 | -40.1 | -60.9 | -     | -66.9 | 156.0 |
|----|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |        |       |       |       | 144.2 |       |       | 115.6 |       |       |       |       | 166.8 |       |       |
| #4 | -175.7 | -     | -     | 74.3  | -     | -     | 160.0 | -     | 173.9 | -85.5 | -44.7 | -65.2 | 165.0 | -52.7 | -     |
|    |        | 115.0 | 175.2 |       | 173.2 | 116.5 |       | 111.7 |       |       |       |       |       |       | 175.7 |
| #5 | 169.3  | -67.2 | 170.9 | 133.5 | -     | -68.6 | 152.1 | 117.3 | 177.4 | -86.8 | 166.7 | -65.0 | -     | -80.1 | 169.3 |
|    |        |       |       |       | 168.0 |       |       |       |       |       |       |       | 150.3 |       |       |

| Mets7                  |                    |             |                |           |
|------------------------|--------------------|-------------|----------------|-----------|
|                        |                    |             |                | Avg. Ang. |
| #Acceptor <sup>a</sup> | Donor <sup>a</sup> | Occupancy % | Avg. Dist. (Å) | (deg.)    |
| MET_2@O                | MET_5@N            | 33.43       | 3.3            | 151.1     |
| ACE_1@O                | GLY_4@N            | 30.35       | 3.3            | 152.3     |
| THR_3@O                | LYS_6@N            | 24.6        | 3.4            | 150.9     |
| GLY_4@O                | GLY_7@N            | 17.8        | 3.4            | 150.4     |
| MET_2@O                | LYS_6@N            | 16.82       | 3.1            | 153.6     |
| MET_5@O                | MET_8@N            | 16.53       | 3.3            | 153.2     |
| THR_3@O                | GLY_7@N            | 10.78       | 3.2            | 145.8     |
| THR_3@O                | MET_5@N            | 10.12       | 3.2            | 134.8     |
| LYS_6@O                | SER_9@N            | 9.4         | 3.5            | 150.5     |
| MET_8@O                | SER_9@OG           | 8.42        | 3.0            | 149.3     |
| LYS_6@O                | MET_8@N            | 7.92        | 3.1            | 135.5     |
| GLY_4@O                | LYS_6@N            | 7.21        | 3.2            | 135.3     |
| ACE_1@O                | THR_3@N            | 6.55        | 3.3            | 133.9     |
| ACE_1@O                | MET_5@N            | 6.36        | 3.4            | 146.4     |
| MET_5@O                | GLY_7@N            | 6.31        | 3.2            | 135.4     |
| GLY_7@O                | NHE_10@N           | 6.18        | 3.5            | 154.9     |
| GLY_7@O                | SER_9@N            | 5.96        | 3.3            | 134.5     |
| MET_2@O                | GLY_4@N            | 5.35        | 3.3            | 134.0     |
| MET_5@O                | SER_9@N            | 5.31        | 3.2            | 149.0     |
| <u>S1</u>              |                    |             |                |           |
| #Acceptor <sup>a</sup> | Donor <sup>a</sup> | Occupancy % | AvgDist        | AvgAng    |
| THR_3@OG1              | GLY_4@N            | 75.8        | 2.9            | 128.7     |
| X_6@O                  | X_6@N2             | 33.23       | 3.6            | 146.7     |

**Table TS2.** Results from H-Bond Analysis of the 75-100 ns Section of the 302.8 K REMDTrajectory of Mets7 and S1

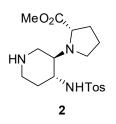
<sup>a</sup> Numbering includes the N-terminal acetyl cap (ACE, residue 1) and the C-terminal NH<sub>2</sub> cap (NHE, residue 10 or residue 9 for Mets7 and S1 peptides, respectively)




**Figure FS1.** Geometries of the most representative structures obtained from the cluster analysis of the 75-100 ns section of the 302.8 K REMD trajectory of Mets7

### **Experimental Materials and Methods**

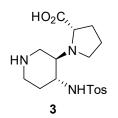
Solvents, reagents were purchased from commercial sources. All peptides were purified using RP-HPLC and a C-18 column (10  $\mu$ m, 250 22 mm). ESI mass spectra were recorded on a LCQ Advantage spectrometer.


### Synthesis of Fmoc-protected scaffold 4

The Fmoc-protected compound **4** was synthesized in solution starting from the known compound **1**.<sup>6</sup> (Scheme S1). Hydrogenolysis of **1** was performed in toluene affording free amino compound **2** (99%). The ester function was hydrolyzed in acidic conditions yielding compound **3** (99%). Finally, the Fmoc group was introduced using Fmoc-OSu, in the presence of DIPEA and MeOH/ACN affording **4** (72%).



Scheme S1. Synthesis of Fmoc scaffold 4


# Methyl 1-[(3R,4R)-4-(4-methylphenylsulfonamido)piperidin-3-yl]-pyrrolidine-2-(S)carboxylate (2)



Compound **1** (0.1 g; 0.212 mmol) was dissolved in toluene (20 ml) and Pd/C (10% 0.1 g) was added. The reaction was kept overnight under stirring in hydrogen atmosphere (TLC: CH<sub>2</sub>Cl<sub>2</sub>/MeOH 20:1). The catalyst was filtered over a celite pad, and the solvent removed under vacuum, affording compound **2** as a white powder (80 mg, 99%).

 $[\alpha]^{25}$ <sub>D</sub>: -82,14° (*c* 0.28 CHCl<sub>3</sub>); mp = 122-124°C; IR v max (KBr): 3436, 3212, 1730cm<sup>-1</sup>; <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 1.35-1.75 (m, 3H), 1.76-2.25 (m, 4H), 2.42 (s, 3H), 2.30-2.75 (m, 5H), 2.40 (s, 3H), 3.40-3.52 (m, 1H), 3.76 (s, 3H), 6.70 (bs, 1H, exch), 7.27 (d, *J* 2.5, 2H), 7.78 (d, *J* 2.5, 2H); <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 21.7, 24.6, 30.0, 35.3, 44.4, 44.9, 45.1, 52.5, 54.2, 59.9, 62.3, 127.5, 129.6, 137.7, 143.0, 176.1; C<sub>18</sub>H<sub>27</sub>N<sub>3</sub>O<sub>4</sub>S: 381.17 ESI-MS: m/z: 382.2 [M+H]<sup>+</sup>


## 1-[(3R,4R)-4-(4-Methylphenylsulfonamido)piperidin-3-yl]-pyrrolidine-2-(8)-carboxylic Acid (3)



Operating in a sealed tube, compound **2** (0.1 g; 0.262 mmol) was dissolved in 6M HCl (10 mL) and heated at 110°C under stirring. After 4 h, the solvent was removed. The crude precipitated was taken up with acetone and a white solid was filtered (95 mg, 99 %).

[α]<sup>25</sup>D: -2,8°(*c* 1 H<sub>2</sub>O); m.p: 170-172 °C; IR v<sub>max</sub> (KBr): 3412, 1731 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, D<sub>2</sub>O) δ ppm: 1.56-1.70 (m, 2H), 2.06-2.46 (m, 4H), 2.39 (s, 3H), 2.93-3.40 (m, 4H), 3.71-3.87 (m, 4H), 4.36-4.44 (m,1H), 7.45 (d, *J* 7.8, 2H), 7.80 (d, *J* 8.3, 2H) <sup>13</sup>C NMR (125 MHz, D<sub>2</sub>O) δ ppm: 21.1, 24.1, 27.4, 28.8, 41.0), 43.1), 50.0, 50.3, 60.3, 67.4, 127.2, 130.9, 135.6, 146.4, 172.0 C<sub>17H<sub>25</sub>N<sub>3</sub>O<sub>4</sub>S: 367.46 ESI-MS: m/z: 368.16[M+H]<sup>+</sup></sub>

## 1-[(3R,4R)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)-4-(4methylphenylsulfonamido)piperidin-3-yl]-pyrrolidine-2-(8)-carboxylic Acid (4)



Compound **3** (0.12 g, 0.3 mmol) was dissolved in ACN/MeOH (4:1, 10 mL). Fmoc-OSu (0.12 mg, 0.33 mmol) and DIPEA (114  $\mu$ l, 0.6 mmol) were added to the solution (pH<8). The reaction was left under stirring for 3h, (TLC: DCM : AcOEt, 1:1). The solvent was removed under vacuum. The crude was resuspended in DCM (30 mL) and washed with H<sub>2</sub>O (3 x 30 mL). The organic layer was anhydrified over Na<sub>2</sub>SO<sub>4</sub> and the solvent removed. The crude was precipitated with AcOEt/Hexane affording compound **4** (0.125 g, 70%) as a white solid.

[α]<sup>25</sup><sub>D</sub>: 29.7°(*c* 1 MeOH); m.p.: 122-127 °C; IR  $v_{max}$ (KBr): 3247, 1740 cm<sup>-1</sup> <sup>1</sup>H NMR (CD<sub>3</sub>OD, 200 MHz) δ 1.56-1.67 (m, 2H), 2.06-2.14 (m, 4H), 2.39 (s,3H), 2.66-2.74 (m, 4H), 3.19-3.29 (m, 2H), 3.67-3.71 (m, 2H), 4.19-4.22 (m, 1H), 4.39-4.80 (m, 3H), 7.20–7.40 (m, 6H), 7.54-7.57 (m, 2H), 7.65-7.80 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz) δ 20.3, 24.4, 25.1, 29.7, 31.1, 41.2, 41.6, 52.1, 54.6, 60.8, 66.3, 67.1, 119.8, 124.5, 127.1, 127.2, 127.7, 129.7, 137.5, 141.5, 144.0, 155.2, 174.7 C<sub>32</sub>H<sub>35</sub>N<sub>3</sub>O<sub>6</sub>S: 589.7 ESI-MS: m/z: 590.8 [M+H]<sup>+</sup>

#### Synthesis of Peptides Mets7, A, B, B1, C, S1

Peptides Mets7, A, B, B1, C and AlaScan<sup>7</sup> were synthesized on Rink-amide resin (0.72 loading) using standard conditions<sup>8</sup> (AA/HOBT/HBTU/DIPEA, 5:5:5:10); 1 h coupling and then 20% piperidine in DMF for Fmoc deprotection).

Regarding peptide **S1**, the coupling of **4** (1.5 eq) was performed on the peptide growing chain linked to rink-amide resin using HOBT and HBTU (1.5 eq) and DIPEA (3 eq), and standing the mixture under shaking overnight.

Compounds **Mets7**, **A**, **B**, **B1**, **C**, **S1** and **AlaScan** were finally acetylated on resin using Ac<sub>2</sub>O (10 eq) and DIPEA (10 eq). The cleavage was then performed using reagent K<sup>14</sup> (trifluoroacetic acid/phenol/water/thioanisole/1,2-ethanedithiol; 82.5:5:5:5:2.5) for 180 min. After the cleavage, the peptides were precipitated and washed using ice-cold anhydrous ethyl ether. The peptides was purified by RP-HPLC using a gradient elution of 95–30% solvent A (solvent A: water/acetonitrile/trifluoroacetic acid 95 : 5 : 0.1; solvent B: water/acetonitrile/trifluoroacetic acid 5 : 95 : 0.1) over 20 min at a flow rate of 20 mL/min<sup>-1</sup>. The purified peptides were freeze-dried and stored at 0 °C.

Mets7: IR (KBr): 3430, 3067, 2918, 1651, 1534, 1437, 1384, 1239, 1168, 1121, 1077, 1030, 595 cm<sup>-1</sup>; ESI-MS for C<sub>34</sub>H<sub>62</sub>N<sub>10</sub>O<sub>11</sub>S<sub>3</sub>: calcd 882.365 found 883.6 [M+H]<sup>+</sup>; peptide A: IR (KBr): 3306, 1673, 1435, 1338, 1200, 1073, 1044, 838, 800, 723, 665 cm<sup>-1</sup>; ESI-MS for C<sub>31</sub>H<sub>56</sub>N<sub>10</sub>O<sub>9</sub>S: calcd 744.348 found 745.4 [M+H]<sup>+</sup>; peptide B: IR (KBr): 3307, 3073, 2928, 1665, 1538, 1441, 1202, 1179, 1133, 835, 800, 721, 598 cm<sup>-1</sup>; ESI-MS for C<sub>30</sub>H<sub>53</sub>N<sub>9</sub>O<sub>9</sub>S<sub>2</sub>: calcd 747.330 found 748.4 [M+H]<sup>+</sup>; peptide C: IR (KBr): 3400, 3076, 2927, 1661, 1534, 1441, 1202, 1179, 1133, 835, 800, 721, 597 cm<sup>-1</sup>; ESI-MS for C<sub>30</sub>H<sub>53</sub>N<sub>9</sub>O<sub>9</sub>S<sub>2</sub>: calcd 747.330 found 748.4 [M+H]<sup>+</sup>; peptide B1: IR (KBr): 3319, 3078, 2936, 2560, 1782, 1665, 1537, 1442, 1203, 1178, 1140, 837, 800, 721, 705 597, 518 cm<sup>-1</sup>; ESI-MS for C<sub>34</sub>H<sub>60</sub>N<sub>10</sub>O<sub>11</sub>S<sub>2</sub>: calcd 848.378 found 849.4 [M+H]<sup>+</sup>; peptide S1: IR (KBr): 3401, 3063, 2974, 2919, 1657, 1535, 1444, 1327, 1306, 1159, 1089, 907, 816, 667, 575, 552 cm<sup>-1</sup>; ESI-MS for C<sub>43</sub>H<sub>70</sub>N<sub>10</sub>O<sub>12</sub>S<sub>4</sub>: calcd 1046.699 found 1047.3 [M+H]<sup>+</sup>; 1069.6 [M+Na]<sup>+</sup>.

**Synthesis of Cu(I) complexes.** In a Schlenk tube containing 4-8 mg of purified, lyophilized peptide in 2 mL of MeOH, solid Cu(OAc)<sub>2</sub> (1 eq.) was added. Ascorbic acid (2 eq.) was introduce for *in situ* reduction of Cu(II) to Cu(I).<sup>9</sup> The solution was stirred for 4 h at room temperature and a formation of precipitate was evinced. The precipitated complex was filtered and the solid was dried *in vacuo*. The solid was washed three times with diethyl ether and analysed by ESI-MS.

Copper(I) complex of Mets7: Pale yellow powder. 3.3 mg, yield 48 %. IR (KBr): 3429, 2919, 1657, 1536, 1429, 1261, 1092, 1026, 587 cm<sup>-1</sup>. ESI-MS for  $[C_{34}H_{62}N_{10}O_{11}S_3Cu]^+$ : calcd 945.31 found 945.3 [Cu(pep)]<sup>+</sup>. Copper(I) complex of A: Pale green powder. 2.1 mg, yield 34 %. IR (KBr): 3322, 3077, 2950, 1661, 1541, 1445, 1251, 1202, 1169, 1030, 639 cm<sup>-1</sup>. ESI-MS for C<sub>31</sub>H<sub>56</sub>N<sub>10</sub>O<sub>9</sub>SCu]<sup>+</sup>: calcd 807.32 found 806.3 [Cu(pep)]<sup>+</sup>. Copper(I) complex of B: pale brown powder. 3.1 mg, yield 44 %. IR (KBr): 3436, 2963, 2926, 1640, 1543, 1441, 1261, 1097, 1033, 802, 642 cm<sup>-1</sup>. ESI-MS for [C<sub>30</sub>H<sub>53</sub>N<sub>9</sub>O<sub>9</sub>S<sub>2</sub>Cu]<sup>+</sup>: calcd 810.27 found 810.3 [Cu(pep)]<sup>+</sup>. Copper(I) complex of B1: pale brown powder. 3.0 mg, yield 38 %. IR (KBr): 3427, 2958, 1802, 1671, 1552, 1439, 1204, 1138, 1086, 1023, 836, 725, 676, 616 cm<sup>-1</sup>. ESI-MS for [C<sub>34</sub>H<sub>60</sub>N<sub>10</sub>O<sub>11</sub>S<sub>2</sub>Cu]<sup>+</sup>: calcd 911.32 found 911.4 [Cu(pep)]<sup>+</sup>. Copper(I) complex of C: pale violet powder. 2.7 mg, yield 33 %. IR (KBr): 3423, 2963, 2918, 2850, 1632, 1442, 1384, 1261, 1095, 1023, 873, 799, 669 cm<sup>-1</sup>. ESI-MS for [C<sub>30</sub>H<sub>53</sub>N<sub>9</sub>O<sub>9</sub>S<sub>2</sub>Cu]<sup>+</sup>: calcd 810.27 found 810.2 [Cu(pep)]<sup>+</sup>. Copper(I) complex of S1: pale lilac powder. 4.5 mg, yield 68 %. IR (KBr): 3421, 2960, 1794, 1632, 1554, 1435, 1261, 1078, 1023, 800, 610, 575 cm<sup>-1</sup>. ESI-MS for [C<sub>43</sub>H<sub>70</sub>N<sub>10</sub>O<sub>12</sub>S<sub>4</sub>Cu]<sup>+</sup>: calcd 1109.34 found 1108.3[Cu(pep)]<sup>+</sup>.

General procedure for Henry reaction.<sup>8</sup> A mixture of peptide-Cu(I) complex (5 mol %, 0.05 eq), *t*-BuOH (1 mL) and either CH<sub>3</sub>NO<sub>2</sub> (1 mL) in a screw capped vial-2 mL was stirred at room temperature for 1.5 h. Then aldehyde (1 eq) was added to the above solution. The resulting reaction mixture was stirred for 12 h at 40 °C. Afterwards, 1N HCl was added to quench the reaction and then the volatiles were evaporated by rotavapor to get crude product. The conversion was determined by <sup>1</sup>H-NMR and the enantiomeric excess by HPLC analysis.<sup>10</sup>

1-Phenyl-2-nitroethanol: Chiralcel OD-H column: 90:10/ hexane:isopropanol, flow: 1.0 mL/min,  $\lambda = 216$  nm, t (*R*)= 15.1 min, t (*S*)= 18.5 min.

1-(4-Nitrophenyl)-2-nitroethanol: Chiralcel OD-H column: 80:20/ hexane:isopropanol, flow: 0.5 mL/min,  $\lambda = 254$  nm, t (*R*)= 26.9 min, t (*S*)= 33.5 min.

1-(4-Chlorophenyl)-2-nitroethanol: Chiralcel OD-H column: 90:10/ hexane:isopropanol, flow: 1.0 mL/min,  $\lambda = 216$  nm, t (*R*)= 15.6 min, t (*S*)= 19.0 min.

**Table TS3:** Evaluation of different solvents in Henry catalyzed reaction by Mets7-copper (I) complex using benzaldehyde as substrate.

| Solvent                                                             | <b>Conversion (%)</b> <sup>[a]</sup> | e.e. (%) <sup>[b]</sup> |
|---------------------------------------------------------------------|--------------------------------------|-------------------------|
| MeOH/CH <sub>3</sub> NO <sub>2</sub> : 5/5                          | 82                                   | 23                      |
| 2-propanol/ CH <sub>3</sub> NO <sub>2</sub> : 8/2                   | 75                                   | 18                      |
| <i>t</i> -BuOH/ CH <sub>3</sub> NO <sub>2</sub> : 8/2               | 50                                   | 45                      |
| <i>t</i> -BuOH/ CH <sub>3</sub> NO <sub>2</sub> : 5/5               | 54                                   | 48                      |
| 6 % NaCl in H <sub>2</sub> O/ CH <sub>3</sub> NO <sub>2</sub> : 8/2 | 79                                   | 10                      |
| MOPS, pH = 7.0, 0.2 M/ CH <sub>3</sub> NO <sub>2</sub> : 8/2        | 80                                   | 8                       |
| H <sub>2</sub> O/ CH <sub>3</sub> NO <sub>2</sub> : 8/2             | 20                                   | 30                      |
| DMSO/ H <sub>2</sub> O/ CH <sub>3</sub> NO <sub>2</sub> : 5/2/5     | 85                                   | 12                      |

All reactions were carried out for 12 h using 5 mol % complex in 2 mL of mixture solvent. <sup>[a]</sup>Conversion was obtained by <sup>1</sup>H-NMR analysis. <sup>[b]</sup>Data were compared by taking the average of three independent experiments. Enantiomeric excess was determined using HPLC equipped with chiral OD-H column. Eluent: hexane/2-propanol=90/10 flow=1.0 mL/min,  $\lambda = 215$  nm. [sub]<sub>f</sub> = 10 mM, [cat]<sub>f</sub> = 0.45 mM.

## NMR data and discussion for peptide S1

All experiments (<sup>1</sup>H, COSY, TOCSY, and ROESY) were recorded in H<sub>2</sub>O/D<sub>2</sub>O 90:10 (9.6 mM) at 500 MHz.

Compound **S1** is present in solution as a mixture of *cis/trans* rotamers of the tertiary amide on the piperidine ring. In particular, the signals of Met-1 and Met-4 are double, while Met-6 are single (Figure FS3), confirming the higher mobility of the peptide chain linked to the piperidine ring due to the rotation of the tertiary amide bond.

| Residue            | NH     | α-Η               | β-H Other         |                     | Roesy <sup>a</sup> |
|--------------------|--------|-------------------|-------------------|---------------------|--------------------|
| MeCO               | -      | -                 | -                 | 2.05 <sup>b</sup>   | -                  |
| Met-1 <sup>d</sup> | 9.00   | 4.60 <sup>b</sup> | 2.53°             | 2.08°               | -                  |
| Thr-2              | 8.08   | 4.30              | 4.19              |                     | NH: α-H Met-1, α-H |
|                    |        |                   |                   |                     | Gly-3              |
|                    |        |                   |                   |                     | α-H: α-H Gly-3     |
| Gly-3              | 8.36c  | 3.85              | -                 | -                   | NH: α-H Thr-2      |
|                    |        |                   |                   |                     | α-Η: α-Η Thr-2     |
|                    |        |                   |                   |                     | α-H: H5 scaffold   |
| Met-4 <sup>d</sup> | 8.07   | 4.52 <sup>b</sup> | 2.53 <sup>b</sup> | 2.07°               | NH: α-H Gly-3      |
| Piperidine         | 7.78°  | -                 | H-2: 4.19 °       | , H-2': 3.54        | H6: α-H Gly-3, α-H |
|                    |        |                   | H-3: 2.36 °       | ; H-4: 2.49 °       | Met-4              |
|                    |        |                   | H-5: 2.36 °       | , 1.86 °            |                    |
|                    |        |                   | H-6: 3.21,        | 3.16                |                    |
|                    |        |                   | Arom: 7.79        | 90, 7.46 <i>m</i> ; |                    |
|                    |        |                   | Me: 2.40          |                     |                    |
| Pro-5              | -      | 4.17              | H-5, H-5':        | 3.59, 3.48; H-4, H- | α-Η: α-Η Gly-3     |
|                    |        |                   | 4': 1.61, 1.      | 44; H-3, H-3': 2.54 |                    |
|                    |        |                   | с                 |                     |                    |
| Met-6              | 8.35 ° | 4.90 <sup>b</sup> | 2.50 °            | 2.00                |                    |
| Ser-7              | 8.35 ° | 4.42              | 3.88              |                     |                    |

Table TS4 <sup>1</sup>H NMR chemical shifts of S1

| NH <sub>2</sub> | 7.60 | - | - | - | 7.60: α-H Ser-7 |
|-----------------|------|---|---|---|-----------------|
|                 | 7.09 |   |   |   |                 |

<sup>a</sup>most significative; <sup>b</sup>overlapped with solvent signals; <sup>c</sup> overlapped

ROESY experiments confirmed the presence of a turn structure. Spatial proximity was indeed observed between the piperidine moiety (H-6 protons) and  $\alpha$ -H of Met-4 and of Gly-3 (Figures FS4-6) as already reported for model sequences.<sup>6b</sup> No NH-NH spatial proximity were observed, while a complete set of NH/ $\alpha$ -H were present, indicating that the two peptidic arms are almost extended, although not in a  $\beta$  hairpin conformation (no intrastrand ROEs observed). This lack of a stable hairpin conformation is also confirmed by the temperature dependence chemical shift variations experiments, in which no NH protons appeared to be involved in H-bonds (Figure FS7).

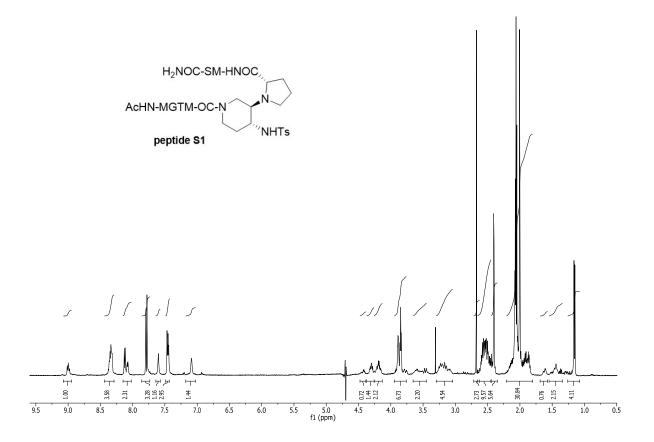



FIGURE FS2. <sup>1</sup>H-NMR spectra of peptide S1.

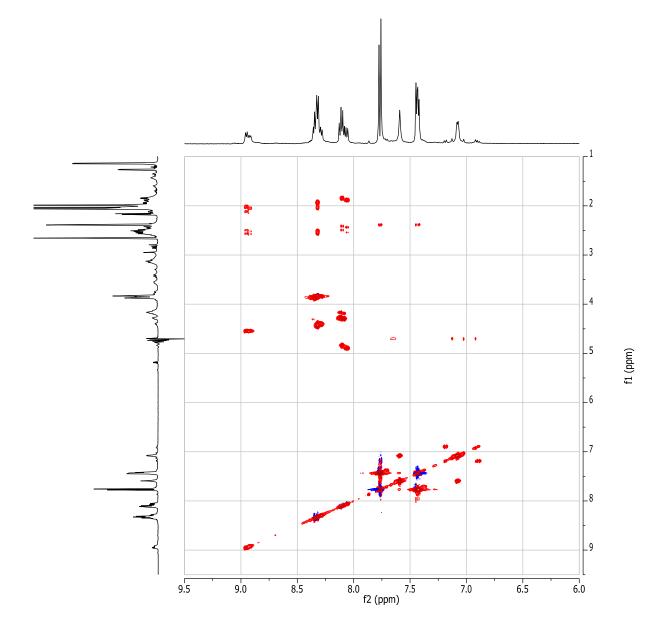



FIGURE FS3: NH/CH region in the TOCSY experiment (500MHZ, 60 ms)

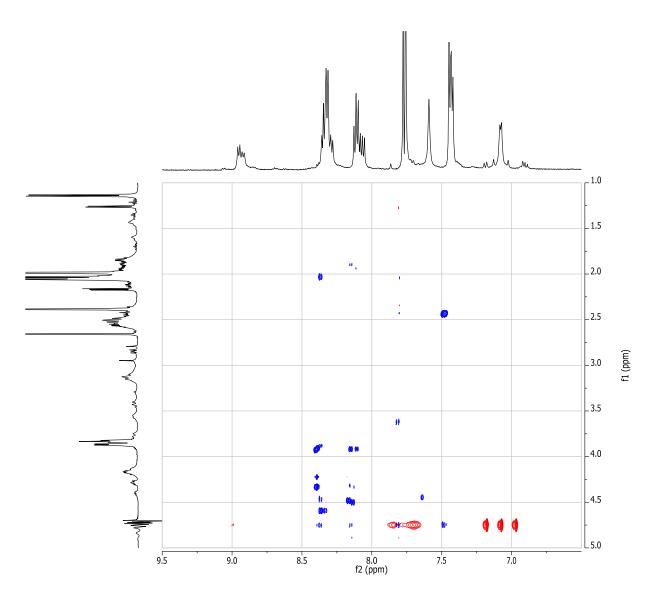



FIGURE FS4: NH/CH region in the ROESY experiment (500MHZ, 200 ms)

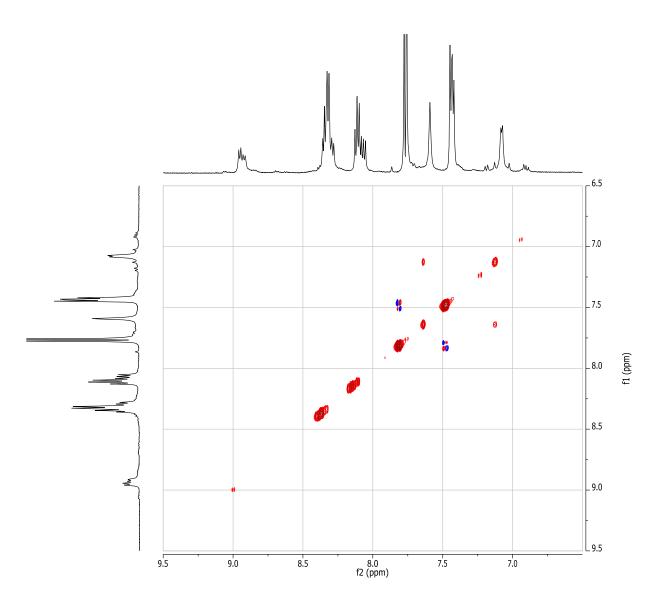



FIGURE FS5: NH/NH region in the ROESY experiment (500MHZ, 200 ms)

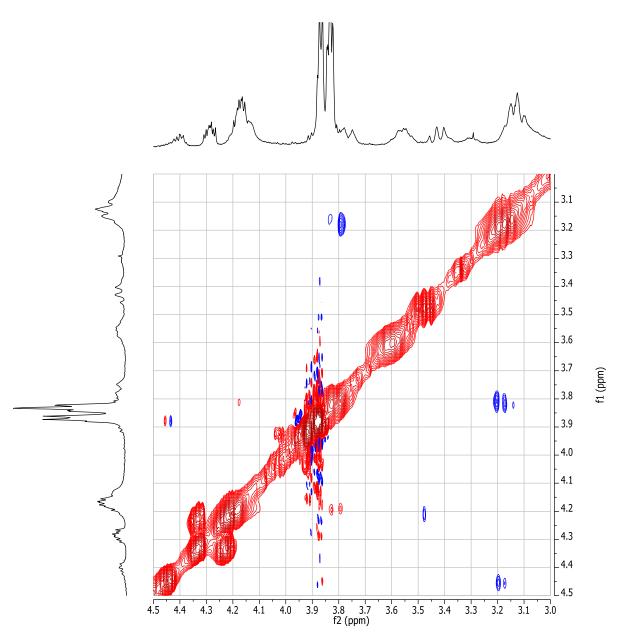



FIGURE FS6: CH/CH region in the ROESY experiment (500MHZ, 200 ms)

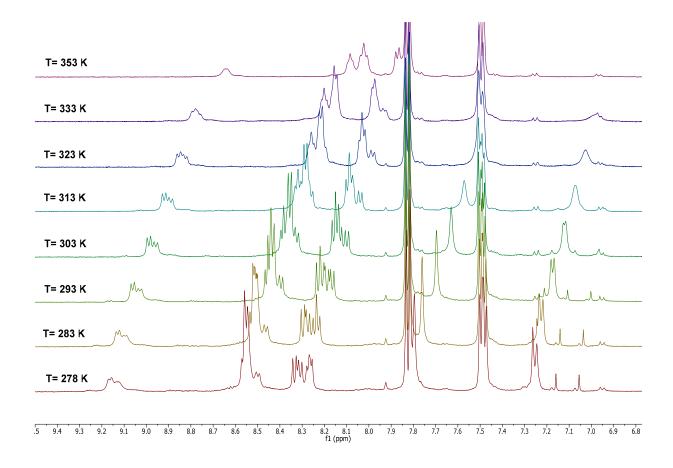
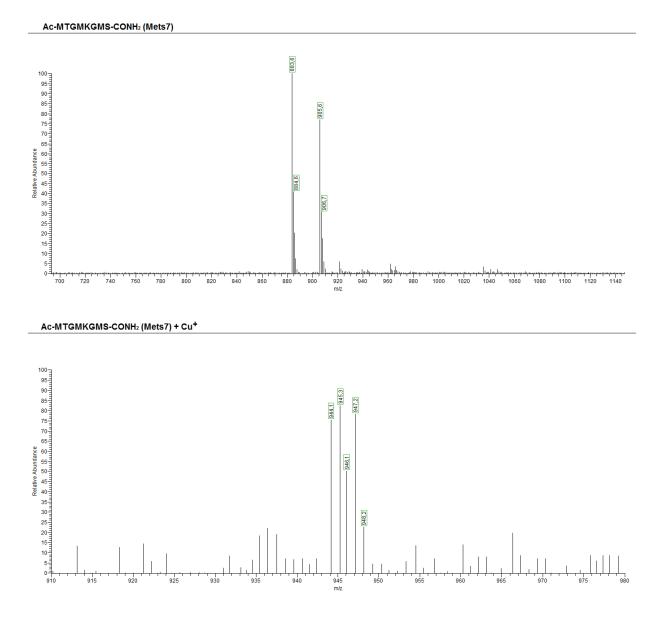




FIGURE FS7: <sup>1</sup>H-NMR spectra of peptide S1 at different temperatures



## ESI-MS spectra of peptides and corresponding Cu-(I) complexes

FIGURE FS8. ESI-MS of peptide Mets7 and of its corresponding Cu(I)-complex.

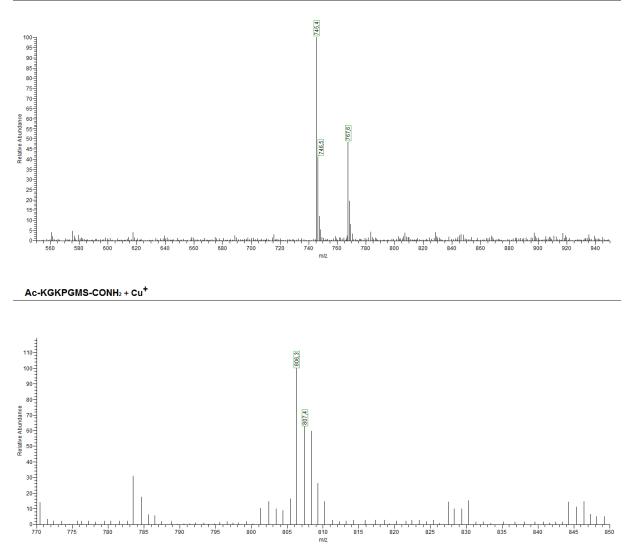



FIGURE FS9. ESI-MS of peptide A and of its corresponding Cu(I)-complex.

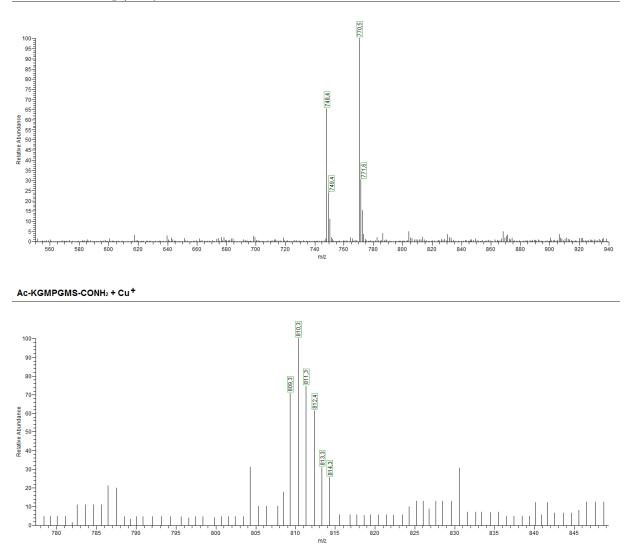



FIGURE FS10. ESI-MS of peptide B and of its corresponding Cu(I)-complex.

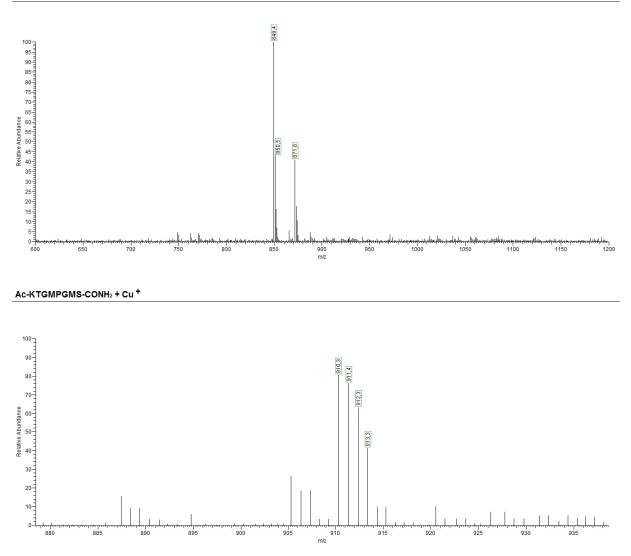



FIGURE FS11. ESI-MS of peptide B1 and of its corresponding Cu(I)-complex.

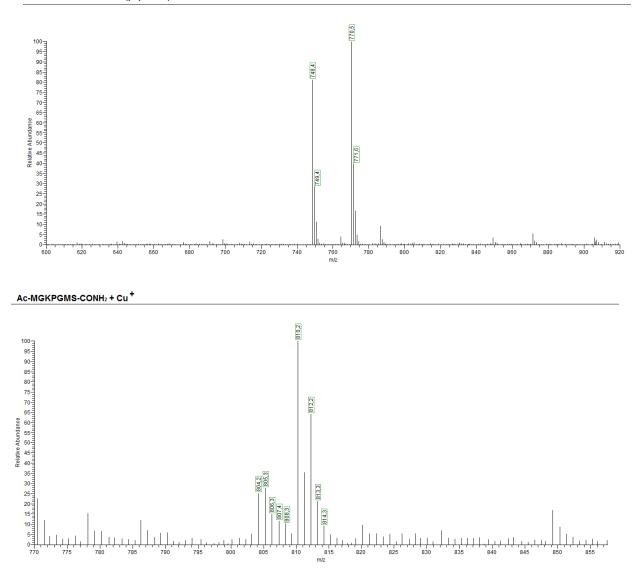



FIGURE FS12. ESI-MS of peptide C and of its corresponding Cu(I)-complex.

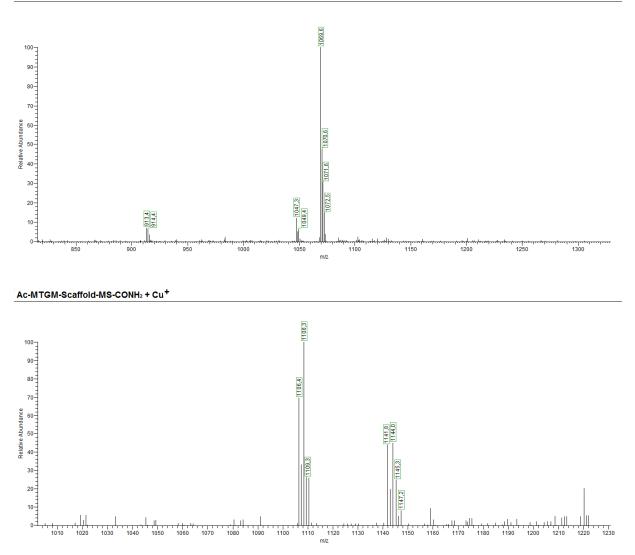
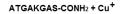




FIGURE FS13. ESI-MS of Cu(I)-complex with peptide S1.



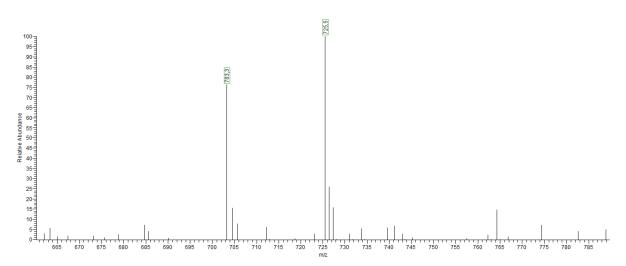



FIGURE FS14. ESI-MS of Cu(I)-complex with Ala-Scan in which the lack of coordination was evinced.

## **Circular Dichroism and UV experiments**

Solutions of peptides Mets7, A, B, B1, C, S1 and their Cu(I) complexes were prepared in H<sub>2</sub>O (100  $\mu$ M, 1.5 mL). CD spectra were obtained from 195 to 250 nm with a 0.1 nm step and 1 s collection time per step, taking three averages. The spectrum of the solvent was subtracted to eliminate interference from cell, solvent, and optical equipment. The CD spectra were plotted as mean residue ellipticity  $\theta$  (degree x cm<sup>2</sup> x dmol<sup>-1</sup>) versus wave length  $\lambda$  (nm). Noise-reduction was obtained using a Fourier-transform filter program.

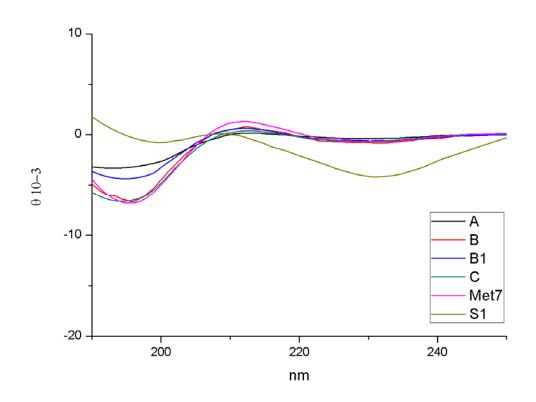
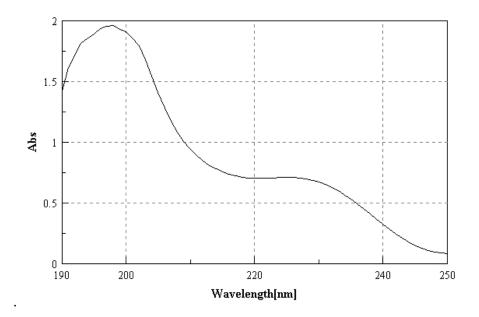
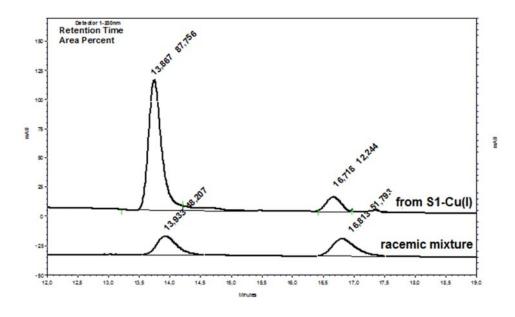
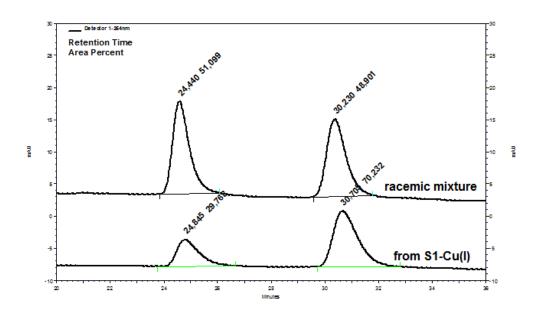
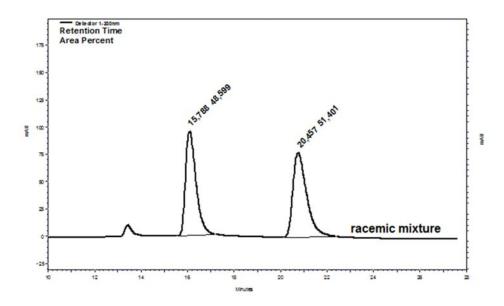





FIGURE FS15. CD spectra of peptides alone




**FIGURE FS16.** UV spectra in water of peptide **S1**. [peptide] = 0.3 mM.


## HPLC spectra of products from Henry reactions



**FIGURE FS17:** HPLC spectra of standard racemic mixture of 2-nitro-1-phenylethan-1-ol vs result obtained by Henry condensation catalyzed by S1-Cu(I) complex.



**FIGURE FS18:** HPLC spectra of standard racemic mixture of 2-nitro-1-(4-nitrophenyl)ethan-1ol vs result obtained by Henry condensation catalyzed by S1-Cu(I) complex.



**FIGURE FS19:** HPLC spectra of standard racemic mixture of 1-(4-chlorophenyl)-2-nitroethan-1-ol.

## **Bibliography**

(1) Case, D. A. B., V.; Berryman, J. T.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; T.E. Cheatham, I.; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T. S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K. M.; Paesani, F.; Roe, D. R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C. L.; Smith, W.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Kollman, P. A. AMBER 14; University of California, San Francisco, 2014.

(2) (a) Ruffoni, A.; Contini, A.; Soave, R.; Lo Presti, L.; Esposto, I.; Maffucci, I.; Nava, D.; Pellegrino, S.; Gelmi, M. L.; Clerici, F., *RSC Advances* 2015, *5* (41), 32643-32656; (b) Pellegrino, S.; Contini, A.; Clerici, F.; Gori, A.; Nava, D.; Gelmi, M. L., *Chem. Eur. J.* 2012, *18* (28), 8705-8715; (c) Maffucci, I.; Clayden, J.; Contini, A., *J. Phys. Chem. B* 2015, *119* (44), 14003-14013; (d) Maffucci, I.; Pellegrino, S.; Clayden, J.; Contini, A., *J. Phys. Chem. B* 2015, *119* (4), 1350-1361.

(3) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E., *Proteins: Structure, Function, and Bioinformatics* **2010**, *78* (8), 1950-1958.

(4) Nguyen, H.; Roe, D. R.; Simmerling, C., J. Chem. Theory Comput. 2013, 9 (4), 2020-2034.

(5) Patriksson, A.; van der Spoel, D., *Physical Chemistry Chemical Physics* 2008, 10 (15), 2073-2077.

(6) (a) Pellegrino, S.; Annoni, C.; Contini, A.; Clerici, F.; Gelmi, M. L., *Amino Acids* 2012, 43
(5), 1995-2003; (b) Pellegrino, S.; Contini, A.; Gelmi, M. L.; Lo Presti, L.; Soave, R.; Erba, E., J. Org. Chem. 2014, 79 (7), 3094-3102.

(7) Ferri, N.; Facchetti, G.; Pellegrino, S.; Pini, E.; Ricci, C.; Curigliano, G.; Rimoldi, I., *Bioorg Med Chem* **2015**, *23*, 2538-47.

(8) Boobalan, R.; Lee, G.-H.; Chen, C., Adv. Synth. Catal. 2012, 354 (13), 2511-2520.

- (9) Jiang, J.; Nadas, I. A.; Kim, M. A.; Franz, K. J., *Inorg. Chem.* **2005**, *44* (26), 9787-9794.
- (10) Lai, G.; Guo, F.; Zheng, Y.; Fang, Y.; Song, H.; Xu, K.; Wang, S.; Zha, Z.; Wang, Z., *Chem. Eur. J.* **2011**, *17* (4), 1114-1117.