Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2016

Sugarcane molasses as pseudocapacitive materials for supercapacitors

A. Sanchez-Sanchez®”, Alicia Martinez de Yuso?, Flavia Lega Braghiroli?, M. Teresa Izquierdo®, Edelio Danguillecourt
Alvarezd, Eduardo Pérez-CappeS, Yodalgis Mosqueda¢, Vanessa Fierro®*, Alain Celzard?.

4 Institut Jean Lamour, UMR CNRS-Université de Lorraine n°7198, ENSTIB, 27 Rue Philippe Séguin, CS 60036, 88026
Epinal Cedex, France

b Instituto de Carboquimica, ICB-CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza, Spain

¢ Institute of Materials Science and Technology (IMRE), Havana University, Zapata y G, Vedado, Havana 10400,
Cuba

d Instituto Superior Minero Metalurgico de Moa (ISMM), Departamento de Metalurgia y Quimica, Holguin 83300,
Cuba

*Corresponding authors:

A. Sanchez-Sanchez: Tel: +33 (0)329 296177. E-mail: angela.sanchez-sanchez@univ-lorraine.fr
Vanessa Fierro: Tel: +33 (0)329 296177. E-mail: Vanessa.Fierro@univ-lorraine.fr



mailto:angela.sanchez-sanchez@univ-lorraine.fr
mailto:Vanessa.Fierro@univ-lorraine.fr

Table S-1. Surface chemical composition (at.%) of the studied samples, determined by XPSY.

Sample C N 0] K Ca Na S Cu Zn Mg Cl Si
M-750 57.3 - 18.3 12.2 1.9 0.3 2.7 * 0.2 1.8 5.2 -
M-900 53.8 - 21.7 11.9 2.4 0.2 3.9 0.1 0.2 2.9 2.8 -
MH 83.7 0.9 13.7 - 0.4 - 0.3 - * 1 - -
MH-750 87.9 0.7 7.5 0.3 0.8 * 1.2 * - 1.1 - 0.3
MH-900 85.9 0.6 7.5 0.8 1.3 * 2.2 - * 1.5 - -
SH 83.9 - 16.1 - - - - - - - - -
SH-900 97.7 - 2.3 - - - - - - - - -

DA high K amount (~ 12 at.%) was found in M-750 and M-900, and Na was also found but at a minor concentration (~ 0.2 at.%).
A small amount of Si was detected for MH-750 and > 1 at.% Mg was measured in all the molasses-derived carbons. Analysis of

the Mg2p peak (Mgls peak was not analysed because it overlapped with Auger peak of chlorine) indicated that Mg was not in

the form of sulphates.

*Concentration < 0.1 at.%; (-) Non detected element.

Table S-2. Binding energy (BE) and relative area contributions to the S2p peak.

BE (eV) A (%)
Sample Oxidised Sulphided
Oxidised Sulphided
S2py/, S2ps3; S2pyy, S2p3,

M-750 170.0 168.9 164.6 163.5 87.8 12.2
M-900 170.4 169.3 164.4 163.4 97.7 2.3
MH-750 170.2 169.0 167.9 163.8 60.1 39.9
MH-900 170.5 169.3 165.1 163.9 75.3 24.7
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Figure S-1. XPS profiles in the Ca 2p region of the carbon materials derived from molasses. The Ca2p peak clearly exhibited
spaced spin-orbit components, the spacing value between the 1/2 and 3/2 orbitals being ~ 3.5eV. This peak was centred at
347.3 and 350.9 eV, indicating that Ca was in the form of CaO and CaSO, CaO may originate from CaCOs by: i) thermal
decomposition at temperatures above ~ 750°C,28 and ii) degradation under prolonged X-ray exposure used in XPS analysis.?® In
both cases, CO, was produced and might be involved in the porosity development of the carbons.
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Figure S-2. S2p high-resolution spectra of the carbons materials derived from molasses. The S2p peak presented closely spaced
spin-orbit components, 1.16 eV apart. No splitting between components was observed and an asymmetric peak appeared due
to an unresolved doublet. The 2p orbital intensity ratio had a value of 0.51, which can be considered as appropriate because
within the interval 0.48 - 0.51.



Intensity (a.u.)
Intensity (a.u.)

202 290 288 286 284 282 280 292 290 288 B EZE(;6V) 284 282 280

av Cll

202 200 288 286 284 282 280 292 290 288 2&(36 )284 282 280

cl

Intensity (a.u.)
Intensity (a.u.)

CIv Clil - ¢y

Intensity (a.u.)
Intensity (a.u.)

202 200 288 286 284 282 280 292 290 288 286 284 282 280
BE (eV) BE (eV)

SH-900

Intensity (a.u.)

202 200 288 286 284 282 280
BE (eV)

Figure S-3. Cls high-resolution spectra of the carbons materials derived from molasses. The peaks are assigned to: Cl
(hydrocarbons, aromatics, aliphatics), Cll (single bond C-O associated to ethers, phenols and anhydrides, Csp3, C=N groups and
C-N bonds in aromatic rings), Clll (double bond C=0 in carbonyls and quinones and C=N groups), CIV (C-O bonds in carboxyls
and CO-N-CO - like groups) and CV (plasmon loss or shake-up satellite n—mn*).3%
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Figure S-4. N1s high-resolution spectra of the samples derived from molasses by HTC. Peak fitting displayed the presence of
two nitrogen contributions for MH (N-6 and amino groups) and four contributions for MH-750 and MH-900 (N-6, N-5, N-Q and
N-X). The peaks are assigned to: N-6 (pyridinic nitrogen), amino groups, N-5 (pyrrolic nitrogen), N-Q (quaternary nitrogen) and
N-X (oxidised N).3%36
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Figure S-5. O1s high-resolution spectra of the studied samples. Three contributions were obtained from the fitting of each peak:
Ol (C=0 linkages in quinone-type groups and carbonyls), Oll (-OH bonds in phenols, C-0—C ether groups and C=0 bonds in ester
and anhydride groups) and Olll (chemisorbed oxygen, non-carbonylic C-O bonds in esters and anhydrides, carboxylic groups
and/or water).3537



Figure S-6. SEM images of molasses- and sucrose-based carbons: (a) MH-900, (b) SH-900 and (c) M-900.
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Figure S-7. CV curves of M-750 (left) and MH-900 (right) at different scan rates within the potential window 0—0.7 V.
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Figure S-8. CV curves obtained for M-750 (a) and MH-750 (b) in 1M H,SO, or 1M NaNOj; electrolytes at 0.5 mV s scan rate.
Specific capacitance results obtained in both electrolytes at different scan rates (c and d). Potential window=0-0.7 V.



