Low-temperature gas-solid carbonation of magnesia and magnesium hydroxide promoted by non-immersive contact with water

James Highfield, Jason Chen, Mojtaba Haghighatlari, Jacob Åbacka, Ron Zevenhoven

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000

Table S1 Physicochemical properties of Mg(OH)₂ extracted from Finnish serpentinite by ÅA method^{Σ}

<u>Mg(OH)₂ source</u> [♀]	<u>Sulphur</u>	Content	BET Surface Area [‡]
	<u>EA*</u> (wt.%)	$\frac{XRF^{\dagger}}{(wt.\%)}$	$\frac{N_2}{(m^2g^{-1})}$
Aldrich > 99%	0.00	0.00	8.1
Aldrich > 95%	0.00	0.00	15.7
Ext. as supplied	2.72	3.65	13.3
Ext. cold wash x1	1.02	1.37	22.6
Ext. cold wash x2	0.95	1.29	28.2
Ext. hot wash x1	0.84	0.90	27.0
Ext. hot wash x2	0.68	0.80	29.6
Dead Sea Periclase	0.08	0.05	3.6

 Σ Extraction method developed at Åbo Akademi based on ammonium sulphate flux yielding aq. Mg²⁺/SO₄²⁻, followed by precipitation of Mg(OH)₂ in aqueous NH₃(pre-separated from iron impurities).

 $^{\circ}$ In all cases only a single diffraction pattern of (hexagonal) brucite was seen by XRD (Bruker D8)

*S analysis by Thermo Scientific Flash 2000 CHNS-O Elemental Analyzer

[†]S analysis by Bruker S4 Explorer X-ray fluorescence spectrometer with "standardless" method [‡]After overnight evacuation at 200 °C

Fig. S1 Snapshots of high-pressure thermogravimetric analyser (HPTGA, mod. 150S; TA Instruments)

Balance stability test

5 Fig. S2 Stability test on the magnetic suspension balance (*Rubotherm AG*) - empty crucible at 800 °C under 10% steam/N₂(150 ml/min) at 40 bar

TG-FTIR layout: ICES Lab 1-5

Fig. S3 Laboratory snapshot of TGA (Setaram *Setsys 12*) coupled to FTIR (*Excalibur FTS-3000*, Digilab). Humidity is supplied by from a Setaram *Wetsys* unit (not shown) housed under the TGA-FTIR.

Fig. S4. Flow scheme of the TGA-FTIR for dry or humid gas supply

Fig. S5 TGA-FTIR profile for magnesite (MgCO₃) obtained from $Mg(OH)_2$ (Aldrich > 95%) by carbonation in the high-pressure thermogravimetric analyser

Fig. S6 TGA-FTIR profile for hydromagnesite $[Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O]$ obtained from $Mg(OH)_2$ (Aldrich > 95%) by carbonation in the high-pressure thermogravimetric analyser

Fig. S7 Snapshots of autoclave (Parr mod. 4523 Bench Top Reactor, 1L capacity) adapted for batch-mode CO₂ absorption into MgO/Mg(OH)₂ promoted by saturated steam: 1. Reactor pot; 2. Sample holder; 3.Oven (with 5 thermocouple); 4. Temperature gauge; 5. Discharge valve (vent); 6. CO₂ feed; 7. N₂ feed; 8. Pressure gauge; 9. Safety release valve (50 bar); 10. Temperature controller.

10

Fig. S9 Custom made two-piece stainless steel sample holder: a. side view; b. conical lid demounted; c. underside view showing vents/perforations.

Fig. S10 Typical pressure vs. time curve for a large (>35g) sample of $Mg(OH)_2$ [Aldrich >95%] loaded into the autoclave and rapidly heated to 150 °C to give a total initial pressure of ~40 bar [35 bar CO₂, 5 bar H₂O (svp)]

Preheat	Conditions			XRD		CO ₂ level	Degree of
(°C)/N2	T (°C),	P _{co2} (bar),	RH (%)	phases [‡]	I _{mag} #	TG-FTIR	Carbonation
0204246					[l _{mag} + l _{liz}]	(wt%)	(96)
300	150	40	83	Mag, Ant	0.43	7.8	22.0
500	150	40	83	Mag, Ant	0.44	10.2	28.8
300	150	40	126	Mag, Ant	0.22	4.9	13.8
300	150	40	168	Mag, Ant	0.23	4.9	13.8
300	165	40	86	Mag, Ant	0.18	5.0	14.1
300	180	40	80	Mag, Liz, Ant	0.40	9.3	26.3
300	180	40	100	Mag, Ant	0.12	4.7	13.3
500	180	40	100	Mag, Ant	0.27	5.1	14.4
300	200	40	51	Mag, Ant	0.47	9.2	26.0
300	200	40	64	Mag, Ant	0.15	4.6	13.0
500	200	40	64	Mag, Ant	0.37	3.2	9.0

 Table S2 Direct carbonation of Finnish serpentinite in humid CO2 in the high-pressure thermogravimetric analyzer

** mag = magnesite (MgCO₂), liz = lizardite, Ant = Antigorite

⁺ Index [h k l], 20: Magnesite = [1 0 4], 32.63°, Lizardite = [1 1 1], 35.91°, Antigorite = [2 0 1], 35.45°

TG-FTIR : carbonated vs. fresh serpentine

Fig. S11 TGA-FTIR profile of Finnish serpentinite (vs.fresh control) carbonated under humid CO₂ in the high-pressure thermogravimetric analyser (HPTGA)