Supplementary Information:

Anion responsive and morphology tunable tripodal gelators

Amrita Ghosh*a, Priyadip Das^b, Rahul Kaushik^a, Krishna Kumar D.^c, D. Amilan Jose^a

^aDepartment of Chemistry, NIT Kurukshetra, Haryana-136119, INDIA ^bInstitute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel ^cDepartment of Chemistry, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland Email: <u>amritaghosh2003@gmail.com</u>

<u>1. The methodology used for binding constant calculations:</u>

For a 1:1 host:guest complex formation, the plot of F/F_0 vs $[X^-]$ (where X⁻ is F⁻, CN⁻, CH₃COO⁻, H₂PO₄⁻) in the following equation (1) should yield a non-linear plot, while the {1 / (F/F₀ – 1)} vs $[X^-]$ plot should yield a straight line; where F and F₀ represent integrated fluorescence intensity in presence and absence of added anionic analytes.

Where, F_{∞}/F_0 is the fluorescence enhancement when the entire guest has been included and K is the equilibrium constant for 1:1 complexation.

Data obtained from the fluorescence titration did not fit to either of the two models mentioned and thus nullifies the possibility of 1:1 binding stoichiometry.

SI Figure 1: Absorption spectra of 1 with different anions

SI Figure 2: Absorption spectra of 2 with different anions

SI Figure 3: Absorption spectra of 3 with different anions

SI Figure 4: Emission spectra of 2 with different anions. Excitation wavelength: 274 nm.

SI Figure 5: Emission spectra of 3 with different anions. Excitation wavelength: 274 nm.

SI Figure 6: Emission titration of receptor **2** (2.5 x 10^{-5} M) in DMSO solution with $F^{-}(0 - 11 \times 10^{-4} \text{ M})$ excitation wavelength: 274 nm.

SI Figure 7: Emission titration of receptor **2** (2.5 x 10^{-5} M) in DMSO solution CN⁻ (0 – 12.5 x 10^{-5} M); excitation wavelength: 274 nm.

SI Figure 8: Emission titration of receptor **2** (2.5 x 10^{-5} M) in DMSO solution with CH₃COO⁻ (0 – 10.5 x 10^{-5} M); excitation wavelength: 274 nm.

<u>8.</u>

SI Figure 9: Emission titration of receptor **3** (2.5 x 10^{-5} M) in DMSO solution with CH₃COO⁻ (0 – 11.0 x 10^{-5} M); excitation wavelength: 274 nm.

SI Figure 10: Emission titration of receptor **3** (2.5 x 10^{-5} M) in DMSO solution CN⁻ (0 – 12.8 x 10^{-5} M); excitation wavelength: 274 nm.

<u>10.</u>

SI Figure 11: Emission titration of receptor **3** (2.5 x 10^{-5} M) in DMSO solution with F⁻ (0 – 10.8 x 10^{-4} M) excitation wavelength: 274 nm.

SI Figure 12: Comparison of FT-IR spectra in bulk solid form, self assembled gel form (in DMSO/water (8:2, v/v)) and with excess fluoride anion.

<u>12.</u>