Electronic Supplementary Material

A colorimetric and "turn-on" fluorimetric chemosensor for selective detection of cyanide and its application in food sample

Jing-Han Hu,*a You Sun,a Jing Qi, Peng-Xiang Pei, Qi Lin, You-Ming Zhangb

E-mail: hujinghan62@163.com*

^a College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, P. R. China

E-mail: hujinghan62@163.com

^b College of Chemical and Chemical Engineering, Northwest Normal University,

Lanzhou, Gansu, 730070, P. R. China

E-mail address: zhangnwnu@126.com.

Corresponding author: Prof. Jing-Han Hu, E-mail: hujinghan62@163.com, Tel: +86 931 18109460354

CONTENTS

1. General Methods2
2. Synthesis of sensor molecule HY4
3. ¹ H NMR spectrum of HY5
4. ¹³ C NMR spectrum of HY6
5. Mass spectrum of HY7
6. Determination of Detection Limit8
7. The UV-vis and fluorescence spectra of HY adding F ⁻ , Cl ⁻ , Br ⁻ , I ⁻ , AcO ⁻ ,
H ₂ PO ₄ ⁻ , HSO ₄ ⁻ ClO ₄ ⁻ , CN ⁻ and SCN ⁻ dissolved in pure water (50 equiv.) in
the DMSO/H ₂ O (v/v = 7:3) solution (λ_{ex} =375 nm)
8. Mass spectrum change of HY + CN ⁻ 10
9. Effect of pH the UV-vis and fluorescence spectra of HY + CN ⁻ 11
10. A part of the literatures were provided in the followed table:12

1. General Methods

Fresh double distilled water was used throughout the experiment. All other reagents and solvents were commercially available at analytical grade and were used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on an Agilent DD2 at 600 MHz spectra. ¹H chemical shifts are reported in ppm downfield from tetramethylsilane (TMS, δ scale) with the solvent resonances as internal standards. UV–visible spectra were recorded on a Shimadzu UV–2550 spectrometer. Photoluminescence spectra were performed on a Shimadzu RF–5301 fluorescence spectrophotometer. Melting points were measured on an X–4 digital melting-point apparatus. The infrared spectra were performed on a Digilab FTS–3000 FT–IR spectrophotometer.

All the UV–vis experiments were carried out in DMSO on a Shimadzu UV–2550 spectrometer. Any changes in the UV–vis spectra of the synthesized compound kept the ligand concentration constant $(2.0 \times 10^{-5} \text{ M})$ in all experiments. Tetrabutylammonium salt $(1.0 \times 10^{-3} \text{ M})$ of anions (F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻, HSO₄⁻ and ClO₄⁻) and sodium salt $(1.0 \times 10^{-3} \text{ M})$ of anions (CN⁻ and SCN⁻) were used for the UV–vis experiments.

All the fluorescence spectroscopy was carried out in DMSO on a Shimadzu RF– 5301 spectrometer. Any changes in the fluorescence spectra of the synthesized compound kept the ligand concentration constant (2.0×10^{-5} M) in all experiments. Tetrabutylammonium salt (1.0×10^{-3} M) of anions (F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻, HSO₄⁻ and ClO₄⁻) and sodium salt (1.0×10^{-3} M) of anions (CN⁻ and SCN⁻) were used for the fluorescence experiments

For ¹H–NMR titrations, the solution of **HY** was prepared in DMSO– d_6 and the appropriate concentrated solution of guest was prepared in DMSO– d_6 . Aliquots of the two solutions were mixed directly in NMR tubes.

2. Synthesis of sensor molecule HY

The synthesis route of sensor **HY** is demonstrated in Scheme 1. An ethanol solution (25 mL) of 4-(Diethylamino)salicylaldehyde (0.966 g, 5 mmol), isonicotinyl hydrazide (0.685 g, 5 mmol) were stirred under reflux 4h. After cooling to room temperature, the yellow precipitate was filtered, washed with hot absolute ethanol three times, then recrystallized with ethanol to get yellow product **HY** in 88% yield. m. p 193°C-196°C. ¹H NMR (DMSO-d₆, 400 MHz) δ : 11.98 (s, 1H), 11.25 (s, 1H), 8.76 (dd, 2H), 8.43 (s, 1H), 7.80(dd, 2H), 7.22 (d, 1H), 6.26 (dd, 1H), 6.11 (d, 1H), 3.35 (q, 4H), 1.09 (t, 6H); ESI-MS m/z: Calcd for [C₁₇H₂₀N₄O₂ + H]⁺ 313.16; Found [C₁₇H₂₀N₄O₂ + H]⁺ 313.20.

Scheme S1 Synthesis of the sensor compound HY.

3. ¹H NMR spectrum of HY

Fig. S1 ¹H–NMR spectrum of HY in DMSO– d_6 .

4. ¹³C NMR spectrum of HY

Fig. S2 ¹³C–NMR spectrum of HY in DMSO– d_6 .

5. Mass spectrum of HY

Fig. S3 Mass spectrum of HY.

6. Determination of Detection Limit

Fig. S4 The photograph of the fluorescent spectrum linear range.

Linear Equation: $Y = 92.24781 \times X - 80.2359$ R = 0.98801

$$S = 9.225 \times 10^7$$
 $\delta = \sqrt{\frac{\Sigma(F - F)2}{(N - 1)}} = 1.603 (N = 10)$ K = 3

 $LOD = K \times \delta/S = 5.21 \times 10^{-8} M$

7. The UV-vis and fluorescence spectra of HY adding F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻, HSO₄⁻ ClO₄⁻, CN⁻ and SCN⁻dissolved in pure water (50 equiv.) in the DMSO/H₂O (v/v = 7:3) solution (λ_{ex} =375 nm)

Fig. S5 a) Absorbance spectra data b) Fluorescence emission data of HY adding F⁻, Cl⁻, Br⁻, I⁻,

AcO⁻, $H_2PO_4^-$, HSO_4^- , CIO_4^- , CN^- and SCN⁻dissolved in pure water (50 equiv.) in the

DMSO/H₂O (v/v = 7:3) solution (λ_{ex} =375 nm).

8. Mass spectrum change of HY + CN⁻.

Fig. S6 Mass spectrum change of $HY + CN^{-}$.

9. Effect of pH the UV-vis and fluorescence spectra of HY + CN⁻.

Fig. S7 Effect of pH on the a) UV-vis and b) Fluorescence spectra of HY $(2.0 \times 10^{-5} \text{ M})$ in

response to CN⁻ (50 equiv.) from 2 to 13 in DMSO/H₂O (v/v=7:3) solution.

10. A part of the literatures were provided in the followed table:

Journal Year.	Response channel	Water content	Detection limits	Application	single crystal data
Page					
This work	Colorimetric and fluorometric (Off-On)	DMSO/H ₂ O $(v/v = 7:3)$.	Fluorometric: $5.21 \times 10^{-8} \text{ M}$	a) INHIBIT molecular logic gates; b) test trips; c) detection in food sample	Yes
Organic Letters 15 (2013) 2386–2389	Fluorometric (Off-On)	DMSO/H ₂ O (v/v = 99:1)			
Talanta 152 (2016) 39–44	Colorimetric and fluorometric (Off-On)	$\frac{DMSO/buffer}{(v/v = 9:1)}$	_	_	Yes
New J. Chem.39 (2015) 4041– 4046	Colorimetric and fluorometric (Off-On)	$\frac{DMSO/H_2O}{(v/v = 3:2)}$	1.2 × 10 ⁻⁹ M	test trips	
Tetrahedron 72 (2016) 1244–1248	Colorimetric and fluorometric (Off-On)	THF/H ₂ O (v: v = 99:1)			
Tetrahedron 70 (2014) 1889–1894	Colorimetric and fluorometric (Off-On)	$\frac{DMSO/H_2O}{(v/v = 9:1)}$	4.0 × 10 ⁻⁷ M		Yes

Table S1:

 T. F. Robbins, H. Qian, X. Su, R. P. Hughes, and I. Aprahamian, Organic Lett. 15 (2013) 2386–2389.

- [2] L. Wan, Q. Shu, J. P. Zhu, S. Jin, N. Li, X. Chen, and S. Chen, Talanta 152 (2016) 39-44.
- [3] J. H. Hu, J. B. Li, J. Qi and You Sun, New J. Chem.39 (2015) 4041-4046.
- [4] Q. Zhang, J. Zhang, H. Zuo, C. Wang, and Y. Shen, Tetrahedron 72 (2016) 1244–1248.
- [5] P. Zhang, B. B. Shi, X. M. You, Y. M. Zhang, Q. Lin, H. Yao, T. B. Wei, Tetrahedron 70 (2014) 1889–1894.