Supporting Information

Three dimensional hierarchically porous crystalline MnO₂ structure design for high rate performance lithium-ion battery anode

Shikun Liu,^a Xusong Liu,^a Jiupeng Zhao,^{*a} Zhongqiu Tong,^b Jing Wang,^a Xiaoxuan Ma,^a Caixia Chi,^a Dapeng Su,^a Xiaoxu Liu,^{*ac} Yao Li,^{*b}

a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China

b Center for Composite Materials Harbin Institute of Technology, Harbin 150001, PR China

c Heilongjiang University of Science and Technology, Harbin 150022, PR China

*Corresponding authors. E-mail: jpzhao@hit.edu.cn; liu88062321@163.com; yaoli@hit.edu.cn **Electrodeposited Processes of Manganese Dioxide:**

Anode:
$$\operatorname{Mn}^{2+} + 2\operatorname{H}_2\operatorname{O} \to \operatorname{MnO}_2 + 4\operatorname{H}^+ + 2e^-$$
 (1)

Cathode:
$$2H^+ + 2e^- \rightarrow H_2$$
 (2)

Overall:
$$Mn^{2+} + 2H_2O \rightarrow MnO_2 + H_2 + 2H^+$$
 (3)

Water electrolysis:
$$2H_2O \rightarrow 2H_2 + O_2$$
 (4)

Fig. S1 Optical image of Ni foam substrate, Ni foam/PS template, HPA-Mn and HPC-Mn samples

directly grown on Ni foam.

Fig. S2 Low resolution SEM images of (a) pure Ni foam and (b) HPC-Mn sample.

Fig. S3 The wide scan XPS spectrum of HPC-Mn sample.

Fig. S4 Two-dimensional SAXS patterns of HPA-Mn anode.

Fig. S5 Schematic representation of the mesoporous formation assisted by oxygen.

Fig. S6 N₂ adsorption-desorption isotherms of (a) HPC-Mn anode and (b) HPA-Mn anode.

Fig. S7 Nyquist plots of HPC-Mn and HPA-Mn anodes.

MnO ₂ Based Anodes	Low Current Density (A g ⁻¹) Capacity (mAh g ⁻¹)	High Current Density (A g ⁻¹) Capacity (mAh g ⁻¹)	Current Density Ratio	Capacity Retention (%)	Ref.
HPC-Mn	0.1 (973.8)	(IIIAII g) 2.0 (798.8)	20	~82.0	Our Work
MnO ₂ /3D porous graphene	0.1 (926.0)	1.6 (433.0)	16	~46.8	1
MnO ₂ network-Ni/PVDF double shell/core fiber	0.05 (1079.0)	0.6 (544.7)	12	~50.5	2
MnO ₂ @N-doped carbon nanotubes	0.05 (1146.0)	1.0 (620.7)	20	~54.2	3
Freestanding MnO ₂ /Ni /PVDF coaxial fiber	0.05 (1178.4)	1.0 (415.0)	20	~35.2	4
MnO ₂ on 3D N-doped graphene hybrid aerogels	0.1 (1003.0)	1.5 (636.0)	15	~63.4	5
MnO ₂ nanoflakes on reduced graphene oxide	0.1 (1430.0)	2.0 (1000.0)	20	~69.9	6
Nanoflaky MnO ₂ on carbon microbeads	0.1 (700.0)	1.5 (230.0)	15	~32.9	7
Mesoporous MnO ₂ nanosheet arrays	0.1 (-)	1.0 (-)	10	~50.0	8
Nanoflaky MnO ₂ /carbon nanotube	0.2 (820.0)	2.0 (420.0)	10	~51.2	9

Table S1 Rate performance comparison of the HPC-Mn and other reported MnO₂-based anodes for

MnO ₂ Based Anodes	Current	Cycling	Specific Capacity (mA	Capacity		
	Density (A g ⁻¹)	Number	h g ⁻¹) After Cycling	Retention (%)	Ref.	
HPC-Mn	0.4	200	778.0	~97.6	Our Work	
MnO ₂ /3D porous graphene	0.1	100	836.0	~84.6	1	
MnO ₂ network-Ni/PVDF double shell/core fiber	0.2	70	500.2	-	2	
MnO ₂ @N-doped carbon nanotubes	0.1	100	1415.0	>100	3	
Freestanding MnO ₂ /Ni /PVDF coaxial fiber	0.05	70	1031.2	-	4	
MnO ₂ on 3D						
N-doped graphene hybrid	0.4	200	909.0	>100	5	
aerogels MnO ₂ nanoflakes on reduced graphene oxide nanosheets	1.0	200	1000.0	~100	6	
Nanoflaky MnO ₂ on carbon microbeads	0.1	100	525.0	-	7	
Mesoporous MnO ₂ nanosheet arrays	1.0	200	900.0	>100	8	
Nanoflaky MnO ₂ /carbon nanotube	0.2	50	620.0	~77.0	9	

Table S2 Cycling performance comparison of the HPC-Mn and other reported MnO₂-based anodes

for LIBs.

Note: The specific capacities of some MnO_2 based anodes would increase with the increase of cycling number, so the capacity retention is >100%.

References:

1 Y. Y. Li, Q. W. Zhang, J. L. Zhu, X. L. Wei and P. K. Shen, J. Mater. Chem. A, 2014, 2, 3163.

2 Y. Zhang, Q. Xiao, G. Lei and Z. Li, Phys. Chem. Chem. Phys., 2015, 17, 18699.

3 J. Yue, X. Gu, X. L. Jiang, L. Chen, N. N. Wang, J. Yang and X. J. Ma, Electrochim. Acta, 2015,

182, 676.

4 Y. Zhang, Z. P. Luo, Q. Z. Xiao, T. L. Sun, G. T. Lei, Z. H. Li and X. J. Li, *J. Power Sources*, 2015, 297, 442.

- 5 Z. Y. Sui, C. Wang, K. Shu, Q. S. Yang, Y. Ge, G. G. Wallace and B. H. Han, *J. Mater. Chem. A*, 2015, **3**, 10403.
- 6 Y. Cao, X. Lin, C. Zhang, C. Yang, Q. Zhang, W. Hu, M. Zheng and Q. Dong, *RSC Adv.*, 2014, 4, 30150.
- 7 H. Wang, J. Liu, X. Wang, C. Wu, Q. Zhao, Y. Fu, X. Yang and H. Shu, RSC Adv., 2014, 4, 22241.
- 8 M. Kundu, C. C. A. Ng, D. Y. Petrovykh and L. F. Liu, Chem. Commun., 2013, 49, 8459.
- 9 H. Xia, M. O. Lai and L. Lu, J. Mater. Chem., 2010, 20, 6896.