## Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary Information



Figure S1: Michaelis-Menten graphs and curve fits using L-alanine as a substrate. A. Wild type pm1; B. pm1ep1; C.

pm1ep2; & **D.** pm1ep3.



**Figure S2:** Michaelis-Menten graphs and curve fits using D-alanine as a substrate. **A**. Wild type pm1; **B**. pm1ep1; **C**. pm1ep2; & **D**. pm1ep3.



Figure S3: Initial pyruvate production by recombinant strain containing pm1ep3.



**Figure S4:** Effect of external concentration of FAD on the enzyme's activity. The highest activity of the pm1 (1.83 μmol·min<sup>-1</sup>·mg<sup>-1</sup>) was defined as 100%.



Figure S5: Substrate entrance site in pm1 (surface representation).



**Figure S6:** Molecular distances of alanine (substrate) from the mutant sites. **A**. in the wild type pm1; **B**. in the mutant pm1ep3.

Table S1: Primers used in this study

| Primer name         | Nucleotide sequence (5'-3')                                            |
|---------------------|------------------------------------------------------------------------|
|                     | Primer used for epPCR                                                  |
| Pm1_F1              | CGCGGATCCATGGCAATAAGTAGAAGAAAATTTA                                     |
| Pm1_R1              | TCCGAGCTCTTAGAAACGATACAGACTAAATGGT                                     |
|                     | Primer used for genes knockout and verification                        |
| <i>cyc</i> A-knockF | ATGGTAGATCAGGTAAAAGTCGTTGCCGATGATCAGGCTCCGGCTGAACAATTCCGGGGATCCGTCGAC  |
|                     | C                                                                      |
| <i>cyc</i> A-knockR | TTATTTCCGCAGTTCAGCAGCCCGCTTCTTACCAATAAACAACCAGCCCATGTAGGCTGGAGCTGCTTCG |
| <i>cyc</i> A-verF   | GCCTGAACAACACAGACAGGTACAGGAAGA                                         |
| <i>cyc</i> A-verR   | CTGGATGGCATTGCGCCATCCAGCATGATA                                         |
| amaP-knockF         | ATGATGAACACGGAAGGTAATAACGGTAACAAACCTCTCGGTCTATGGAAATTCCGGGGATCCGTCGAC  |
|                     | C                                                                      |
| amaP-knockR         | TTATACGGTTTTATTGCGCTTCATGACCATTGCCACAATAAGGCTGAGTATGTAGGCTGGAGCTGCTTCG |
| amaP-verF           | TCGGTCGCTAAGCAACTCGGCTATAACGTG                                         |
| amaP-verR           | ACCGCCACCACAATAATACAGGAAGTACTG                                         |
| <i>lld</i> P-knockF | ATGAATCTCTGGCAACAAAACTACGATCCCGCCGGGAATATCTGGCTTTCATTCCGGGGATCCGTCGACC |
| <i>lld</i> P-knockR | TTAAGGAATCATCCACGTTAAGACATAAGCCTGAAGCGTGGTGATCACGCTGTAGGCTGGAGCTGCTTCG |
| <i>lld</i> P-verF   | CATTACACGATGTGCGTGGACTCCAGGAGA                                         |
| <i>lld</i> P-verR   | CGGCAACCTCGTCTGACAGGCGTCTGGGTA                                         |

| Enzyme          | <i>K</i> <sub>d</sub> (mM) | $\Delta H^{o}$ (kcal.mol <sup>-1</sup> ) | $\Delta G^{o}$ (kcal.mol <sup>-1</sup> ) |  |
|-----------------|----------------------------|------------------------------------------|------------------------------------------|--|
| Wild type (Pm1) | 15.21 ± 0.34               | -9.53 ± 0.15                             | -7.08 ± 0.07                             |  |
| Pm1ep1          | 11.93 ± 0.12               | $-11.09 \pm 0.21$                        | -6.45 ± 0.11                             |  |
| Pm1ep2          | $9.15 \pm 0.11$            | $-12.14 \pm 0.08$                        | -5.76 ± 0.08                             |  |
| Pm1ep3          | 6.76 ± 0.09                | -13.27 ± 0.14                            | -4.97 ± 0.03                             |  |

 Table S2: Thermodynamic parameter for L-alanine binding to wild type and its mutants.

 $K_{d}$  and  $\Delta H^{o}$  were obtained from fit to a binding isotherm, while  $\Delta G^{o}$  was calculated from  $\Delta G^{o}$  = RTIn $K_{d}$ . Each value represents the mean of three or more independent ITC experiments.

**Table S3:**  $K_m$  values of different amino acid deaminases/oxidases.

| Enzyme's name          | Origin              | Substrate       | <i>K</i> <sub>m</sub> (mM) | References |
|------------------------|---------------------|-----------------|----------------------------|------------|
| L-amino acid deaminase | Proteus mirabilis   | L-Phenylalanine | 31.55                      | 35         |
| L-amino acid deaminase | Proteus mirabilis   | L-Phenylalanine | 26.2                       | S1         |
| L-amino acid deaminase | Proteus myxofaciens | L-Phenylalanine | 2.28                       | S2         |
| L-Amino Acid Oxidases  | Proteus rettgeri    | L-Lysine        | 23.2                       | S3         |
| L-amino acid deaminase | Proteus vulgaris    | L-Methionine    | 305.0                      | S4         |

S1: Y. Hou, G. S. Hossain, J. Li, H. D. Shin, L. Liu, and G. Du, *Appl. Microbiol. Biotechnol.*, 2015, **99**, 8391-8402. S2: D.

P. Pantaleone, A. M. Geller, and P. P. Taylor, J. Mol. Catal. B: Enzymol., 2001, 11, 795–803. S3: J. A. Duerre, and S.

Chakrabarty, J. Bacteriol., 1975, 121, 656-663. S4: G. S. Hossain , J. Li , H. D. Shin, G. Du, M. Wang, L. Liu, and J.

Chen, PLoS One, 2014, 9, e114291.