Supplementary materials

A universal strategy for direct immobilization of intact

bioactivity-conserved carbohydrates on gold nanoparticles

Xiao Wang ^{a,b}, Jiying Xu ^{a,*}, Yuanyuan Wang ^{a,b}, Fuyi Wang ^{a,b} and Yi Chen ^{a,b,c,*}

^a Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese

Academy of Sciences, Beijing 100190, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c Beijing National Laboratory for Molecular Science, Beijing 100190, China

Fig S1

Fig. S1 The preparation process for immobilization of intact carbohydrates on GNP was characterized by SEM, with (A), (B), (C) and (D) corresponding to GNP-Tween 20, GNP-MUOH/MUA, GNP-mannose and GNP-mannose interacted with 100 nM Con A respectively; the error bar was 100 nm.

Fig. S2 A standard concentration curve of mannose obtained by colorimetry anthrone/sulfuric acid method. The concentration of mannose is 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 mM, and the absorption at 620 nm was recorded.

Calculation of D-mannose density on GNP

First, assuming that mannose molecule takes on a cube structure, each side is 6 Å (CambridgeSoft., Ultra, version 9.0). When mannose molecules are tightly packed on the surface of gold nanoparticles, the maximal number of mannose molecules on one gold nanoparticle is 1.47 $\times 10^3$ (= 5.31 $\times 10^4$ Å² / 36 Å², i.e. the surface area of one 13 nm GNP divided by that of each mannose molecule), corresponding to 2.44 $\times 10^{-12}$ nmol.

In the actual experiments of immobilization of mannose on gold nanoparticles, the mannose concentration is 55 mM before reaction, and 54.99013 mM after reaction through anthrone/sulfuric acid experiment. The change of the mannose concentration is $\Delta C = 0.00987$ mM in the reaction process, so the number of immobilized mannose molecules is 5.94174 × 10¹⁸ in terms of unit volume.

The concentration of gold nanoparticles is measured to be 15.42 nM. Therefore, the number of gold nanoparticles is 9.28×10^{15} (= $15.42 \times 6.02 \times 10^{23} \times 10^{-9}$) per unit volume. So the number of combined with the mannose molecules immobilized on each gold nanoparticle is 0.64×10^{3} (= $5.94174 \times 10^{18} / 9.28 \times 10^{15}$). Compared with the theoretical calculation results (1.47×10^{3}), the surface coverage, i.e. measured/theoretical, is 43.54% (= $0.64 \times 10^{3} / 1.47 \times 10^{3} \times 100\%$).